Skip to main content

Advertisement

Log in

Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

EXCITATION-CONTRACTION coupling in skeletal muscle involves a voltage sensor in the plasma membrane which, in response to depolarization, causes an intracellular calcium-release channel to open. The skeletal isoform of the ryanodine receptor (RyR-1) functions as the Ca2+-release channel1–3 and the dihydropyridine receptor (DHPR) functions as the voltage sensor and also as an L-type Ca2+ channel4,5. Here we examine the possibility that there is a retrograde signal from RyR-1 to the DHPR, using myotubes from mice homozygous for a disrupted RyR-1 gene (dyspedic mice)3. As expected, we find that there is no excitation–contraction coupling in dyspedic myotubes, but we also find that they have a roughly 30-fold reduction in L-type Ca2+-current density. Injection of dyspedic myotubes with RyR-1 complementary DNA restores excitation–contraction coupling and causes the density of L-type Ca2+ current to rise towards normal. Despite the differences in Ca2+-current magnitude, measurements of charge movement indicate that the density of DHPRs is similar in dyspedic and RyR-1-expressing myotubes. Our results support the possibility of a retrograde signal by which RyR-1 enhances the function of DHPRs as Ca2+ channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleischer, S. & Inui, M. A. Rev. Biophys. biophys. Chem. 18, 333–364 (1989).

    Article  CAS  Google Scholar 

  2. McPherson, P. S. & Campbell, K. P. J. biol. Chem. 268, 13765–13768 (1993).

    CAS  Google Scholar 

  3. Takeshima, H. et al. Nature 369, 556–559 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Rios, E. & Brum, G. Nature 325, 717–720 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Tanabe, T., Beam, K. G., Powell, J. A. & Numa, S. Nature 336, 134–139 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Buck, R., Zimanyi, I., Abramson, J. J. & Pessah, I. N. J. biol. Chem. 267, 23560–23567 (1992).

    CAS  PubMed  Google Scholar 

  7. Takeshima, H. et al. EMBO J. 14, 2999–3006 (1995).

    Article  CAS  Google Scholar 

  8. Giannini, G., Conti, A., Mammarella, S., Scorbogna, M. & Sorrentino, V. J. Cell Biol. 128, 893–904 (1995).

    Article  CAS  Google Scholar 

  9. Penner, R., Neher, E., Takeshima, H., Nishimura, S. & Numa, S. FEBS Lett. 259, 217–221 (1989).

    Article  CAS  Google Scholar 

  10. García, J., Tanabe, T. & Beam, K. G. J. gen. Physiol. 103, 125–147 (1994).

    Article  Google Scholar 

  11. Adams, B. A., Tanabe, T., Mikami, A., Numa, S. & Beam, K. G. Nature 346, 569–572 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Ma, J., Hosey, M. M. & Rios, E. Biophys. J. 59, 201a (1991).

    Google Scholar 

  13. Ma, J. & Coronado, R. Biophys. J. 53, 387–395 (1988).

    Article  CAS  Google Scholar 

  14. Yatani, A. et al. J. biol. Chem. 263, 9887–9895 (1988).

    CAS  PubMed  Google Scholar 

  15. Mejía-Alvarez, R., Fill, M. & Stefani, E. J. gen. Physiol. 97, 393–412 (1991).

    Article  Google Scholar 

  16. Caffrey, M. J., Brown, M. A. & Schneider, D. M. Science 236, 570–573 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Winger, D. B. & Lansman, B. J. J. Physiol., Lond. 425, 563–578 (1990).

    Article  Google Scholar 

  18. Dirksen, R. T. & Beam, K. G. J. gen. Physiol. 105, 227–247 (1995).

    Article  CAS  Google Scholar 

  19. Gonzalez, A. & Rios, E. J. gen. Physiol. 102, 373–421 (1993).

    Article  CAS  Google Scholar 

  20. Ma, J. et al. J. gen. Physiol. 102, 423–448 (1993).

    Article  CAS  Google Scholar 

  21. Feldmeyer, D., Melzer, W., Pohl, B. & Zöllner, P. Pflügers Arch. ges. Physiol. 425, 54–61 (1993).

    Article  CAS  Google Scholar 

  22. Takekura, H., Bennett, L., Tanabe, T., Beam, K. G. & Franzini-Armstrong, C. Biophys. J. 67, 793–803 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Takekura, H., Nishi, M., Noda, T., Takeshima, H. & Franzini-Armstrong, C. Proc. natn. Acad. Sci. U.S.A. 92, 3381–3385 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Doetschman T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. J. Embryol. exp. Morph. 87, 27–45 (1985).

    CAS  PubMed  Google Scholar 

  25. Gossler, A., Doetschman, T., Korn, R., Serfling, E. & Kemler, R. Proc. natn. Acad. Sci. U.S.A. 83, 9065–9069 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Takeshima, H. et al. Nature 339, 439–445 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Rando, T. A. & Blau, H. M. J. Cell Biol. 125, 1275–1287 (1994).

    Article  CAS  Google Scholar 

  28. García, J. & Beam, K. G. J. gen. Physiol. 103, 107–123 (1994).

    Article  Google Scholar 

  29. Adams, B. A. & Beam. K. G. J. gen. Physiol. 94, 429–444 (1989).

    Article  CAS  Google Scholar 

  30. Tanabe, T., Adams, B. A., Numa, S. & Beam, K. G. Nature 352, 800–803 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakai, J., Dirksen, R., Nguyen, H. et al. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380, 72–75 (1996). https://doi.org/10.1038/380072a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380072a0

  • Springer Nature Limited

This article is cited by

Navigation