Skip to main content
Log in

Measurement of the opacity of ionized helium in the intergalactic medium

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

DETERMINATION of the density and ionization state of diffuse primordial gas in the intergalactic medium (IGM) is an important step towards understanding the nature of dark matter and the formation of structure in the Universe. Absorption by neutral hydrogen atoms in the IGM should produce a large flux deficit in the spectra of high-redshift quasars at wavelengths below that of the H I Lyman-α line (the Gunn–Peterson effect1). But observations of quasars at low spectral resolution have revealed only relatively small deficits, and at higher spectral resolution these appear as numerous discrete absorption features (the Lyman-α forest). This implies that intergalactic hydrogen is both highly ionized and non-uniformly distributed2. Similar absorption is expected from intergalactic helium3, although its detection is more challenging and evidence for its existence was obtained only recently4,5. Here we report the observation of absorption from singly ionized helium (He ii) in the spectrum of the quasar HS1700 + 64. We measure a mean flux deficit over the redshift range 2.2 < z < 2.6 that yields an effective optical depth of 1.00 (±0.07). Comparing this result with the H I absorption towards this quasar, we argue that most of the measured He II absorption occurs in the lowest-density regions of the IGM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunn, J. E. & Peterson, B. A. Astrophys. J. 142, 1633–1636 (1965).

    Article  ADS  CAS  Google Scholar 

  2. Sargent, W. L. W., Young, P. J., Boksenberg, A. & Tytler, D. Astrophys. J. Suppl. Ser. 42, 42–48 (1980).

    Article  ADS  Google Scholar 

  3. Miralda-Escudé, J. Mon. Not. R. astr. Soc. 262, 273–276 (1993).

    Article  ADS  Google Scholar 

  4. Jakobsen, P. et al. Nature 370, 35–39 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Tytler, D. et al. in QSO Absorption Lines (eds Bergeron, G., Meylan, G. & Wampler, J.) 289–298 (Springer, Heidelberg, 1995).

    Book  Google Scholar 

  6. Jakobsen, P. et al. Astrophys. J. 417, 528–540 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Davidsen, A. F. et al. Astrophys. J. 392, 264–271 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Davidsen, A. F. Science 257, 327–334 (1993).

    Article  ADS  Google Scholar 

  9. Reimers, D. et al. Astr. Astrophys. 218, 71–77 (1989).

    ADS  CAS  Google Scholar 

  10. Vogel, S. & Reimers, D. Astr. Astrophys. 294, 377–410 (1995).

    ADS  CAS  Google Scholar 

  11. Kruk, J. W. et al. Astrophys. J. 454, L1–L6 (1995).

    Article  ADS  Google Scholar 

  12. Zheng, W. & Davidsen, A. F. Astrophys. J. 440, L53–L56 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Giroux, M. L., Fardal, M. A. & Shull, M. J. Astrophys. J. 451, 477–483 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Oke, J. & Korycanski, D. G. Astrophys. J. 255, 11–19 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Press, W. H., Rybicki, G. B. & Schneider, D. P. Astrophys. J. 414, 64–81 (1993).

    Article  ADS  Google Scholar 

  16. Hu, E. M., Kim, T.-S., Cowie, L. L., Songaila, A. & Rauch, M. Astr. J. 110, 1526–1543 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Songaila, A., Hu, E. M. & Cowie, L. L. Nature 375, 124–126 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Reisenegger, A. & Miralda-Escudé, J. Astrophys. J. 449, 476–487 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Rodríguez-Pascual, P. M. et al. Astrophys. J. 448, 575–588 (1995).

    Article  ADS  Google Scholar 

  20. Miralda-Escudé, J. & Ostriker, J. P. Astrophys. J. 350, 1–22 (1990).

    Article  ADS  Google Scholar 

  21. Madau, P. & Meiksin, A. Astrophys. J. 433, L53–L56 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Haardt, F. & Madau, P. Astrophys. J. (in the press).

  23. Cen, R., Miralda-Escudé, J., Ostriker, J. P. & Rauch, M. Astrophys. J. 437, L9–L12 (1994).

    Article  ADS  Google Scholar 

  24. Miralda-Escudé, J., Cen, R., Ostriker, J. P. & Rauch, M. Astrophys. J. (in the press).

  25. Hemquist, L., Katz, N., Weinberg, D. H. & Miralda-Escudé, J. Astrophys. J. 457, L51–L56 (1996).

    ADS  Google Scholar 

  26. Cardelli, J., Clayton, G. & Mathis, J. Astrophys. J. 345, 245–256 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Burstein, D. & Heiles, C. Astrophys. J. 225, 40–55 (1978).

    Article  ADS  Google Scholar 

  28. Stark, A. A. et al. Astrophys. J. Suppl. Ser. 79, 77–104 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Eastman, R. G. & MacAlpine, G. M. Astrophys. J. 299, 785–798 (1985).

    Article  ADS  CAS  Google Scholar 

  30. Netzer, H., Elitzur, M. & Ferland, G. Astrophys. J. 299, 752–762 (1985).

    Article  ADS  CAS  Google Scholar 

  31. Jenkins, E. B. & Ostriker, J. P. Astrophys. J. 376, 33–42 (1991).

    Article  ADS  CAS  Google Scholar 

  32. Dobrzycki, A. & Bechtold, J. Astrophys. J. 377, L69–L72 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidsen, A., Kriss, G. & Zheng, W. Measurement of the opacity of ionized helium in the intergalactic medium. Nature 380, 47–49 (1996). https://doi.org/10.1038/380047a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380047a0

  • Springer Nature Limited

This article is cited by

Navigation