Skip to main content
Log in

Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

LONG–TERM potentiation (LTP) in hippocampus is a type of synap-tic plasticity that is thought to be involved in learning and memory1. Several lines of evidence suggest that LTP involves 3′,5′-cyclic GMP (cGMP), perhaps as an activity-dependent presynaptic effector of one or more retrograde messengers (refs 2-12, but see ref. 13). However, previous results are also consistent with postsynaptic effects of cGMP. This is difficult to test in hippocam-pal slices, but more rigorous tests are possible in dissociated cell culture14–17. We have therefore developed a reliable method for producing N-methyl-D-aspartate (NMDA) receptor-dependent LTP at synapses between individual hippocampal pyramidal neurons in culture. We report that inhibitors of guanylyl cyclase or of cGMP-dependent protein kinase block potentiation by either tetanic stimulation or low-frequency stimulation paired with postsynaptic depolarization. Conversely, application of 8-Br-cGMP to the bath or injection of cGMP into the presynaptic neuron produces activity-dependent long-lasting potentiation. The potentiation by cGMP involves an increase in transmitter release that is in part independent of changes in the presynaptic action potential. These results support a presynaptic role for cGMP in LTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawkins, R. D., Kandel, E. R. & Siegelbaum, S. A. A. Rev. Neurosci. 16, 625–665 (1993).

    Article  CAS  Google Scholar 

  2. DeVente, J., Bol, J. G. J. M., Hudson, L., Schipper, J. & Steinbusch, H. W. M. Brain Res. 446, 387–395 (1988).

    Article  CAS  Google Scholar 

  3. Matsuoka, J. et al. J. Neurosci. 12, 3350–3360 (1992).

    Article  CAS  Google Scholar 

  4. Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V. & Snyder, S. H. Science 259, 381–384 (1993).

    Article  ADS  CAS  Google Scholar 

  5. East, S. J. & Garthwaite, J. Neurosci. Lett. 123, 17–19 (1991).

    Article  CAS  Google Scholar 

  6. Chetkovich, D. M., Klann, E. & Sweatt, J. D. NeuroReport 4, 919–922 (1993).

    Article  CAS  Google Scholar 

  7. Haley, J. E., Wilcox, G. L. & Chapman, P. F. Neuron 8, 211–216 (1992).

    Article  CAS  Google Scholar 

  8. Arancio, O., Kandel, E. R. & Hawkins, R. D. Soc. Neurosci. Abstr. 19, 241 (1993).

    Google Scholar 

  9. Arancio, O., Kandel, E. R. & Hawkins, R. D. Soc. Neurosci. Abstr. 20, 1713 (1994).

    Google Scholar 

  10. Hawkins, R. D., Zhuo, M. & Arancio, O. J. Neurobiol. 25, 652–665 (1994).

    Article  CAS  Google Scholar 

  11. Zhuo, M., Kandel, E. R. & Hawkins, R. D. NeuroReport 5, 1033–1036 (1994).

    Article  CAS  Google Scholar 

  12. Zhuo, M., Hu, Y., Schultz, C., Kandel, E. R. & Hawkins, R. D. Nature 368, 635–639 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Schuman, E. M., Meffert, M. K., Schulman, H. & Madison, D. V. Proc. natn. Acad. Sci. U.S.A. 91, 11958–11962 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Forsythe, I. D. & Westbrook, G. L. J. Physiol., Lond. 396, 515–533 (1988).

    Article  CAS  Google Scholar 

  15. Bekkers, J. M. & Stevens, C. F. Nature 346, 724–729 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Malgaroli, A. & Tsien, R. W. Nature 357, 134–139 (1992).

    Article  ADS  CAS  Google Scholar 

  17. O'Dell, T. J., Hawkins, R. D., Kandel, E. R. & Arancio, O. Proc. natn. Acad. Sci. U.S.A. 88, 11285–11289 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Bliss, T. V. P. & Lømo, T. J. Physiol., Lond. 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  19. Schwartzkroin, P. A. & Wester, K. Brain Res. 89, 107–119 (1975).

    Article  CAS  Google Scholar 

  20. McNaughton, B. L., Douglas, R. M. & Goddard, G. V. Brain Res. 157, 277–293 (1978).

    Article  CAS  Google Scholar 

  21. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  22. Malinow, R. & Miller, J. P. Nature 320, 529–530 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Wigström, H., Gustafsson, B., Huang, Y.-Y. & Abraham, W. C. Acta physiol. Scand. 126, 317–319 (1986).

    Article  Google Scholar 

  24. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305, 719–721 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Del Castillo, J. & Katz, B. J. Physiol., Lond. 124, 560–574 (1954).

    Article  CAS  Google Scholar 

  26. Faber, D. S. & Korn, H. Biophys. J. 60, 1288–1294 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Malinow, R. & Tsien, R. W. Nature 346, 177–180 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Neher, E. & Eckert, R. in Calcium and Ion Channel Modulation (eds Grinnel, A. D., Armstrong, D. & Jackson, M. B.) 371–377 (Plenum, New York, 1988).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arancio, O., Kandel, E. & Hawkins, R. Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature 376, 74–80 (1995). https://doi.org/10.1038/376074a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376074a0

  • Springer Nature Limited

This article is cited by

Navigation