Skip to main content

Electrophysiological and Biochemical Studies of AMPA Receptor Phosphorylation and Synaptic Plasticity in Hippocampal CA1 Mini-Slices

  • Protocol
  • First Online:
Multidisciplinary Tools for Investigating Synaptic Plasticity

Part of the book series: Neuromethods ((NM,volume 81))

  • 834 Accesses

Abstract

In the hippocampus, synapses undergo activity-dependent changes in synaptic strength, and this is thought to underlie some forms of learning and memory. Different patterns of activity can selectively enhance synaptic transmission, inducing long-term potentiation (LTP), or weaken synapses, resulting in long-term depression (LTD). It is thought that the activation of specific signaling pathways will dictate the direction of plasticity, with kinases leading to LTP and phosphatases leading to LTD. These signaling molecules influence synaptic strength by modifying the phosphorylation state of many target proteins. In particular, bi-directional alterations in the phosphorylation of AMPA receptors can affect the trafficking and conductance of these receptors, which greatly impact the magnitude of synaptic strength. In order to further understand the signaling at AMPA receptors, and their contribution to synaptic plasticity, investigators employ a wide variety of approaches, from genetics and molecular biology to behavior. Here we describe our approaches using electrophysiological and biochemical methods with acute mouse hippocampal CA1 mini-slices to study GluA1 phosphorylation during LTP and LTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298:776–780

    Article  PubMed  CAS  Google Scholar 

  2. Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11:459–473

    Article  PubMed  CAS  Google Scholar 

  3. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  PubMed  CAS  Google Scholar 

  4. Winder DG, Sweatt JD (2001) Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat Rev Neurosci 2:461–474

    Article  PubMed  CAS  Google Scholar 

  5. Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5:952–962

    Article  PubMed  CAS  Google Scholar 

  6. Delgado JY, Coba M, Anderson CN, Thompson KR, Gray EE, Heusner CL, Martin KC, Grant SG, O’Dell TJ (2007) NMDA receptor activation dephosphorylates AMPA receptor glutamate receptor 1 subunits at threonine 840. J Neurosci 27:13210–13221

    Article  PubMed  CAS  Google Scholar 

  7. Boehm J, Kang MG, Johnson RC, Esteban J, Huganir RL, Malinow R (2006) Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51:213–225

    Article  PubMed  CAS  Google Scholar 

  8. Svenningsson P, Bateup H, Qi H, Takamiya K, Huganir RL, Spedding M, Roth BL, McEwen BS, Greengard P (2007) Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine. Eur J Neurosci 26:3509–3517

    Article  PubMed  Google Scholar 

  9. Du J, Suzuki K, Wei Y, Wang Y, Blumenthal R, Chen Z, Falke C, Zarate CA Jr, Manji HK (2007) The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharmacology 32:793–802

    Article  PubMed  CAS  Google Scholar 

  10. Du J, Creson TK, Wu LJ, Ren M, Gray NA, Falke C, Wei Y, Wang Y, Blumenthal R, Machado-Vieira R, Yuan P, Chen G, Zhuo M, Manji HK (2008) The role of hippocampal GluR1 and GluR2 receptors in manic-like behavior. J Neurosci 28:68–79

    Article  PubMed  CAS  Google Scholar 

  11. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843

    Article  PubMed  CAS  Google Scholar 

  12. Zhao D, Watson JB, Xie CW (2004) Amyloid β prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol 92:2853–2858

    Article  PubMed  CAS  Google Scholar 

  13. Ho OH, Delgado JY, O’Dell TJ (2004) Phosphorylation of proteins involved in activity-dependent forms of synaptic plasticity is altered in hippocampal slices maintained in vitro. J Neurochem 91:1344–1357

    Article  PubMed  CAS  Google Scholar 

  14. Sherman-Gold R (2008) The axon CNS guide for electrophysiology and biophysics laboratory techniques. MDS Analytical Technologies, Sunnyvale, CA

    Google Scholar 

  15. Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology. Wiley, New York

    Google Scholar 

  16. Finkel A, Bookman R (2001) The electrophysiology setup. Curr Protoc Neurosci 6.1.1–6.1.6

    Google Scholar 

  17. Alegria-Schaffer A, Lodge A, Vattem K (2009) Performing and optimizing Western blots with an emphasis on chemiluminescent detection. Methods Enzymol 463:573–599

    Article  PubMed  CAS  Google Scholar 

  18. Gallagher S, Winston SE, Fuller SA, Hurrell JGR (2008) Immunoblotting and immunodetection. Curr Protoc Immunol 83:8.10.1–8.10.28

    Google Scholar 

  19. Gallagher S, Chakavarti D (2008) Immunoblot analysis. J Vis Exp. doi:10.3791/759

    Google Scholar 

  20. Wang T, Kass IS (1997) Preparation of brain slices. Methods Mol Biol 72:1–14

    PubMed  CAS  Google Scholar 

  21. Madison DV, Edson EB (2001) Preparation of hippocampal brain slices. Curr Protoc Neurosci 6.4.1–6.4.7

    Google Scholar 

  22. Nguyen PV (2006) Comparative plasticity of brain synapses in inbred mouse strains. J Exp Biol 209:2293–2303

    Article  PubMed  CAS  Google Scholar 

  23. Bortolotto ZA, Amici M, Anderson WW, Isaac JT, Collingridge GL (2011) Synaptic plasticity in the hippocampal slice preparation. Curr Protoc Neurosci 54:6.13.1–6.13.26

    Google Scholar 

  24. Mathis DM, Furman JL, Norris CM (2011) Preparation of acute hippocampal slices from rats and transgenic mice for the study of synaptic alterations during aging and amyloid pathology. J Vis Exp doi:. doi:10.3791/2330

    Google Scholar 

  25. Hájos N, Mody I (2009) Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content. J Neurosci Methods 183:107–113

    Article  PubMed  Google Scholar 

  26. Hájos N, Ellender TJ, Zemankovics R, Mann EO, Exley R, Cragg SJ, Freund TF, Paulsen O (2009) Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur J Neurosci 29:319–327

    Article  PubMed  Google Scholar 

  27. Lee HK, Kameyama K, Huganir RL, Bear MF (1998) NMDA induces long-term synaptic depression and dephosphorylation of GluR1 subunit of AMPA receptors in hippocampus. Neuron 21:1151–1162

    Article  PubMed  CAS  Google Scholar 

  28. Makhinson M, Chotiner JK, Watson JB, O’Dell TJ (1999) Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. J Neurosci 19:2500–2510

    PubMed  CAS  Google Scholar 

  29. Otmakhov N, Khibnik L, Otmakhova N, Carpenter S, Riahi S, Asrican B, Lisman J (2004) Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. J Neurophysiol 91:1955–1962

    Article  PubMed  CAS  Google Scholar 

  30. Davies KD, Goebel-Goody SM, Coultrap SJ, Browning MD (2008) Long term synaptic depression that is associated with GluR1 dephosphorylation but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. J Biol Chem 283:33138–33146

    Article  PubMed  CAS  Google Scholar 

  31. Grosshans DR, Clayton DA, Coultrap SJ, Browning ND (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 5:27–33

    Article  PubMed  CAS  Google Scholar 

  32. Navak A, Zastrow DJ, Lickteig R, Zahniser NR, Browning MD (1998) Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 394:680–683

    Article  Google Scholar 

  33. Opazo P, Watabe AM, Grant SGN, O’Dell TJ (2003) Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 23:3679–3688

    PubMed  CAS  Google Scholar 

  34. Jeffrey RA, Ch’ng TH, O’Dell TJ, Martin KC (2009) Activity-dependent anchoring of importin α at the synapse involves regulated binding to the cytoplasmic tail of the NR1-1a subunit of the NMDA receptor. J Neurosci 29:15613–15620

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gray, E.E., O’Dell, T.J. (2013). Electrophysiological and Biochemical Studies of AMPA Receptor Phosphorylation and Synaptic Plasticity in Hippocampal CA1 Mini-Slices. In: Nguyen, P. (eds) Multidisciplinary Tools for Investigating Synaptic Plasticity. Neuromethods, vol 81. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-517-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-517-0_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-516-3

  • Online ISBN: 978-1-62703-517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics