Skip to main content
Log in

Functional analysis of activins during mammalian development

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ACTIVINS are dimeric (βAβA; βBβB; βAβB) members of the transforming growth factor-β superfamily1. They are widely expressed during murine development1–6, are highly conserved during vertebrate evolution1,7–11, and may be involved in mesoderm induction and neurulation in Xenopus laevis and Oryzias latipes10–17 . To investigate the function of mammalian activins in vivo, we generated mice with mutations either in activin-βA or in both activin-βA and activin-βB. Activin-βA-deficient mice develop to term but die within 24 h of birth. They lack whiskers and lower incisors and have defects in their secondary palates, including cleft palate, demonstrating that activin-βA must have a role during craniofacial development. Mice lacking both activin subunits show the defects of both individual mutants but no additional defects, indicating that there is no functional redundancy between these proteins during embryogenesis. In contrast to observations in lower vertebrates10–17, zygotic expression of activins is not essential for mesoderm formation in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vale, W., Hsueh, A., Rivier, C. & Yu, J. Peptide Growth Factors and their Receptors II (eds Sporn, M. B. & Roberts, A. B.) (Springer, Berlin, 1990).

    Google Scholar 

  2. Manova, K., Paynton, B. V. & Bachvarova, R. F. Mech. Dev. 36, 141–152 (1992).

    Article  CAS  Google Scholar 

  3. Albano, R. M., Groome, N. & Smith, J. C. Development 117, 711–723 (1993).

    CAS  PubMed  Google Scholar 

  4. Lu, R-Z., Shigemi, M., Nishihara, M. & Takahashi, M. Biol. Reprod. 49, 1163–1169 (1993).

    Article  CAS  Google Scholar 

  5. Albano, R. M., Arkell, R., Beddington, R. S. P. & Smith, J. C. Development 120, 803–813 (1994).

    CAS  PubMed  Google Scholar 

  6. Feijen, A., Goumans, M. J. & van den Eijnden-van Raaij, A. J. M. Development 120, 3621–3637 (1994).

    CAS  PubMed  Google Scholar 

  7. Esch, F. S. et al. Molec. Endocr. 1, 388–396 (1987).

    Article  CAS  Google Scholar 

  8. Mitrani, E. et al. Cell 63, 495–501 (1990).

    Article  CAS  Google Scholar 

  9. Ge, W., Gallin, W. J., Strobeck, C. & Peter, R. E. Biochem. biophys. Res. Commun. 193, 711–717 (1993).

    Article  CAS  Google Scholar 

  10. Smith, J. C., Price, B. M. J., Van Nimmen, K. & Huylebroeck, D. Nature 345, 729–731 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Thomsen, G. et al. Cell 63, 485–493 (1990).

    Article  CAS  Google Scholar 

  12. Kondo, M. Biochem. biophys. Res. Commun. 181, 684–690 (1991).

    Article  CAS  Google Scholar 

  13. Hemmati-Brivanlou, A. & Melton, D. A. Nature 359, 609–614 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Mathews, L. S., Vale, W. E. & Kintner, C. R. Science 255, 1702–1705 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Hemmati-Brivanlou, A. & Melton, D. A. Cell 77, 273–281 (1994).

    Article  CAS  Google Scholar 

  16. Wittbrodt, J. & Rosa, F. M. Gene Dev. 8, 1448–1462 (1994).

    Article  CAS  Google Scholar 

  17. Gurdon, J. B., Harger, P., Mitchell, A. & Lemaire, P. Nature 371, 487–492 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Roberts, V. J. & Barth, S. Endocrinology 134, 914–923 (1994).

    Article  CAS  Google Scholar 

  19. Vassalli, A., Matzuk, M. M., Gardner, H. A. R., Lee, K-F. & Jaenisch, R. Genes Dev. 8, 414–427 (1994).

    Article  CAS  Google Scholar 

  20. Centrella, M., McCarthy, T. L. & Canalis, E. Molec. cell. Biol. 11, 250–258 (1991).

    Article  CAS  Google Scholar 

  21. Luyten, F. P., Chen, P., Paralkar, V. & Reddi, A. H. Expl Cell Res. 210, 224–229 (1994).

    Article  CAS  Google Scholar 

  22. Satokata, I. & Maas, R. Nature Genet. 6, 348–356 (1994).

    Article  CAS  Google Scholar 

  23. Gorlin, R. J., Cohen, M. M. & Levin, L. S. Syndromes of the Head and Neck (Oxford Monogr. Med. Genet. No. 19) 3rd ed 693–714 (Oxford University Press, Oxford, UK, 1990).

    Google Scholar 

  24. Gluecksohn-Waelsch, S. Mouse Newslett. 25, 12 (1961).

    Google Scholar 

  25. Letterio, J. J. et al. Science 264, 1936–1938 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. M. & Kuehn, M. R. Nature 361, 543–547 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Conlon, F. et al. Development 120, 1919–1928 (1994).

    CAS  PubMed  Google Scholar 

  28. Schulte-Merker, S., Smith, J. C. & Dale, L. EMBO J. 13, 3533–3541 (1994).

    Article  CAS  Google Scholar 

  29. Matzuk, M. M., Kumar, T. R. & Bradley, A. Nature 374, 356–360 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Bradley, A. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robinson, E. J.) (IRL, Oxford, 1987).

    Google Scholar 

  31. Matzuk, M. M., Finegold, M. J., Su, J-G.J., Hsueh, A. J. W. & Bradley, A. Nature 360, 313–319 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzuk, M., Kumar, T., Vassalli, A. et al. Functional analysis of activins during mammalian development. Nature 374, 354–356 (1995). https://doi.org/10.1038/374354a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374354a0

  • Springer Nature Limited

This article is cited by

Navigation