Skip to main content
Log in

Perceptual sensitivity maps within globally defined visual shapes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AN unsolved problem of biology is the processing of global shape in natural vision. The known processes of early vision are spatially restricted (or local) operations, and little is known about their interactions in organizing the visual image into functionally coherent (or global) objects. Here we introduce a human psychophysical method which allows us to measure the effect of perceptual organization on the activity pattern of local visual detectors. We map differential contrast sensitivity for a target across regions enclosed by a boundary. We show that local contrast sensitivity is enhanced within the boundary even for large distances between the boundary and the target. Furthermore, the locations of maximal sensitivity enhancement in the sensitivity maps are determined by global shape properties. Our data support a class of models which describe shapes by the means of a medial axis transformation1–3, implying that the visual system extracts ‘skeletons’ as an intermediate-level representation of objects. The skeletal representation offers a structurally simplified shape description which can be used for higher-level operations and for coding into memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blum, H. in Models for the Perception of Speech and Visual Form (ed. Wathen-Dunn, W.) 362–380 (MIT Press, Cambridge, USA 1967).

    Google Scholar 

  2. Blum, H. Perspect. Biol. Med. 10, 381–408 (1967).

    Article  CAS  Google Scholar 

  3. Blum, H. J. theor. Biol. 38, 205–287 (1973).

    Article  CAS  Google Scholar 

  4. Gabor, D. J. IEE Lond. 93, 429–457 (1946).

    Google Scholar 

  5. Marcelja, S. J. opt. Soc. Am. 70, 1297–1300 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Field, D. J., Hayes, A. & Hess, R. F. Vision Res. 33, 173–193 (1993).

    Article  CAS  Google Scholar 

  7. Kovács, I. & Julesz, B. Proc. natn. Acad. Sci. U.S.A. 90, 7495–7497 (1993).

    Article  ADS  Google Scholar 

  8. Polat, U. & Sagi, D. Vision Res. 33, 993–999 (1993).

    Article  CAS  Google Scholar 

  9. Polat, U. & Sagi, D. Vision Res. 34, 73–78 (1994).

    Article  CAS  Google Scholar 

  10. Lamme, V. A. F. Invest. Ophthal. vis. Sci. 35, 1489 (1994).

    Google Scholar 

  11. Zipser, K., Lee, T. S., Lamme, V. A. F. & Schiller, P. H. Invest. Ophthal. vis. Sci. 35, 1973 (1994).

    Google Scholar 

  12. Blum, H. & Nagel, R. N. Pattern Recogn. 10, 167–180 (1978).

    Article  Google Scholar 

  13. Koenderink, J. J. & van Doom, A. J. Biol. Cyb. 53, 383–396 (1986).

    Article  CAS  Google Scholar 

  14. Kimia, B. B., Tannenbaum, A. R. & Zucker, S. W. Int. J. comp. vis. (in the press).

  15. Burbeck, C. A. & Pizer, S. M. Invest. Ophthal. vis. Sci. 35, 1626 (1994).

    Google Scholar 

  16. Grinvald, A., Lieke, E. E., Frostig, R. D. & Hildesheim, R. J. Neurosci. 14, 2545–2568 (1994).

    Article  CAS  Google Scholar 

  17. Tolhurst, D. & Barfield, L. Vision Res. 18, 951–958 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, I., Julesz, B. Perceptual sensitivity maps within globally defined visual shapes. Nature 370, 644–646 (1994). https://doi.org/10.1038/370644a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370644a0

  • Springer Nature Limited

This article is cited by

Navigation