Skip to main content

Advertisement

Log in

An eye-specific Gβ subunit essential for termination of the phototransduction cascade

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

HETEROTRIMERIC G proteins couple various receptors to intracellu-lar effector molecules. Although the role of the Gα subunit in effector activation, guanine nucleotide exchange and GTP hydro-lysis has been well studied1–4, the cellular functions of the Gα subunits are less well understood5,6. Gβγ dimers bind Gα subunits and anchor them to the membrane for presentation to the receptor7–9. In specific systems, the Gβ subunits have also been implicated in direct coupling to ion channels and to effector molecules10–19. We have isolated Drosophila melanogaster mutants defective in an eye-specific G-protein β-subunit (Gβe), and show here that the β-subunit is essential for G-protein-receptor coupling in vivo. Remarkably, Gβ mutants are also severely defective in the deactivation of the light response, demonstrating an essential role for the Gβ subunit in terminating the active state of this signalling cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross, E. M. Neuron 3, 141–152 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 349, 117–127 (1991).

    ADS  CAS  PubMed  Google Scholar 

  3. Simon, M. S., Strathmann, M. P. & Gautam, N. Science 252, 802–808 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Conklin, B. R. & Bourne, H. R. Cell 73, 631–641 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Iniguez-Lluhi, J., Kleuss, C. & Gilman, A. Trends Cell Biol. 3, 230–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Clapham, D. & Neer, E. Nature 365, 403–406 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Fung, B. K.-K. J. biol. Chem. 258, 10495–10502 (1983).

    CAS  PubMed  Google Scholar 

  8. Florio, V. A. & Sternweis, P. C. J. biol. Chem. 264, 3909–3915 (1989).

    CAS  PubMed  Google Scholar 

  9. Sternweis, P. C. J. biol. Chem. 261, 631–637 (1986).

    CAS  PubMed  Google Scholar 

  10. Logothetis, D. E. et al. Nature 325, 321–326 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Federman, A. D., Conklin, B. R., Schrader, K. A., Reed, R. R. & Bourne, H. R. Nature 356, 159–161 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Tang, W.-J. & Gilman, A. G. Science 254, 1500–1503 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Blank, J. L., Brattain, K. A. & Exton, J. H. J. biol. Chem. 267, 23069–23075 (1992).

    CAS  PubMed  Google Scholar 

  14. Boyer, J. L., Waldo, G. L. & Harden, T. K. J. biol. Chem. 267, 25451–25456 (1992).

    CAS  PubMed  Google Scholar 

  15. Camps, M. et al. Nature 360, 684–686 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Katz, A., Wu, D. & Simon, M. I. Nature 380, 686–689 (1992).

    Article  ADS  Google Scholar 

  17. Kurjan, J. A. Rev. Biochem. 61, 1097–1129 (1992).

    Article  CAS  Google Scholar 

  18. Blumer, K. J. & Thorner, J. Proc. natn. Acad. Sci. U.S.A. 87, 4363–4367 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Lilly, P., Wu, L., Welker, D. L. & Devreotes, P. N. Genes Dev. 7, 986–995 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Dolph, P. J. et al. Science 260, 1910–1916 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Yarfitz, S., Niemi, G., McConnell, J., Fitch, C. & Hurley, J. Neuron 7, 429–438 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Ranganathan, R., Harris, G. L., Stevens, C. F. & Zuker, C. S. Nature 354, 230–232 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Hardie, R. Proc. R. Soc. Lond. B245, 203–210 (1991).

    Article  ADS  Google Scholar 

  24. Smith, D. P. et al. Science 254, 1478–1484 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Ranganathan, R., Harris, W. & Zuker, C. S. Trends Neurosci. 14, 486–493 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Zuker, C. S. Curr. Opin. Neurobiol. 2, 622–627 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, Y. J., Dobbs, M. B., Verardi, M. L. & Hyde, D. R. Neuron 5, 889–898 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Minke, B. in The Molecular Mechanisms of Phototransduction (ed. Steive, H.) 241–286 (Springer, New York, 1986).

    Book  Google Scholar 

  29. Yamazaki, A. et al. J. biol. Chem. 265, 11539–11548 (1990).

    CAS  PubMed  Google Scholar 

  30. Pitcher, J. et al. Science 257, 1264–1267 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Ron, D. et al. Proc. natn. Acad. Sci. U.S.A. 91, 839–843 (1994).

    Article  ADS  CAS  Google Scholar 

  32. Yarfitz, S., Provost, N. M. & Hurley, J. B. Proc. natn. Acad. Sci. U.S.A. 85, 7134–7138 (1988).

    Article  ADS  CAS  Google Scholar 

  33. Hardie, R. C. et al. Nature 363, 634–637 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolph, P., Man-Son-Hing, H., Yarfitzt, S. et al. An eye-specific Gβ subunit essential for termination of the phototransduction cascade. Nature 370, 59–61 (1994). https://doi.org/10.1038/370059a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/370059a0

  • Springer Nature Limited

This article is cited by

Navigation