Skip to main content

Photopigment-dependent Adaptation in Invertebrates — Implications for Vertebrates

  • Conference paper
The Molecular Mechanism of Photoreception

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 34))

Abstract

Bleaching light in vertebrate rods and strong colored light which converts a substantial fraction of rhodopsin (R) to metarhodopsin (M) in invertebrate photoreceptors both induce a prolonged excitation in the dark which desensitizes both kinds of photoreceptors for a long time in the dark. There are remarkable similarities between the characteristics of the prolonged dark excitation in both vertebrates and invertebrates: a) both are induced by pigment conversion from R. b) Both can be cut short by regeneration of R molecules, c) Both are composed of discrete events similar to photon-induced events, d) Both are accompanied by a large reduction in sensitivity to light, e) Both are localized to the illuminated area and do not spread all over the cell. A molecular mechanism is suggested to account for the prolonged dark excitation. The model suggests that when large amounts of R molecules are converted to the M state, many activated M molecules continue to be active in the dark due to lack of phosphorylation giving rise to the prolonged dark excitation. The decline of the prolonged excitation is due to phosphorylation’s turnoff of the active M molecules. The mechanisms by which excitation desensitizes the photoreceptor are still unknown, but in invertebrates part of it is mediated via an increase in intracellular free Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albani, C.; Nöll, G.N.; and Yoshikami, S. 1980. Rhodopsin regeneration, calcium and the control of the dark current in vertebrate rods. Photochem. Photobiol. 32: 515–520.

    Article  PubMed  CAS  Google Scholar 

  2. Almagor, E.; Hillman, P.; and Minke, B. 1986. Spatial properties of the prolonged depolarizing afterpotential (PDA) in barnacle photoreceptors: I. The induction process. J. Gen. Physiol., in press.

    Google Scholar 

  3. Almagor, E.; Hillman, P.; and Minke, B. 1986. Spatial properties of the prolonged depolarizing afterpotential: II. Antagonistic interactions. J. Gen. Physiol., in press.

    Google Scholar 

  4. Barnes, S.N., and Goldsmith, T.H. 1977. Dark adaptation, sensitivity, and rhodopsin level in the eye of the lobster, Homarus. J. Comp. Physiol. 120: 143–159.

    Article  CAS  Google Scholar 

  5. Barlow, H.B. 1956. Retinal noise and absolute threshold. J. Opt. Soc. Am. 46: 634–639.

    Article  PubMed  CAS  Google Scholar 

  6. Barlow, H.B. 1964. Dark-adaptation: a new hypothesis. Vision Res. 4: 47–58.

    Article  PubMed  CAS  Google Scholar 

  7. Baylor, D.A., and Lamb, T.D. 1982. Local effects of bleaching in retinal rods of the toad. J. Physiol. 328: 49–71.

    PubMed  CAS  Google Scholar 

  8. Baylor, D.A.; Lamb, T.D.; and Yau, K.-W. 1979. Responses of retinal rods to single photons. J. Physiol. 288: 613–634.

    PubMed  CAS  Google Scholar 

  9. Blumenfeld, A.; Erusalimsky, J.; Heichal, O.; Selinger, Z.; and Minke, B. 1985. Light-activated guanosinetriphosphatase in Musca eye membranes resembles the prolonged depolarizing afterpotential in photoreceptor cells. Proc. Natl. Acad. Sci. USA 82: 7116–7120.

    Article  PubMed  CAS  Google Scholar 

  10. Bownds, D.; Dawes, J.; Miller, J.; and Stahlman, M. 1972. Phosphorylation of frog photoreceptor membranes induced by light. Nature New Biol. 237: 125–127.

    PubMed  CAS  Google Scholar 

  11. Classen-Linke, I.., and Stieve, H. 1981. Time course of dark adaptation in the Limulus ventral nerve photoreceptor — measured as constant response amplitude curve — and its dependence upon extracellular calcium. Biophys. Struct. Mech. 7: 336–337.

    Google Scholar 

  12. Cornwall, M.C.; Fein, A.; and MacNichol, E.F., Jr. 1983. Spatial localization of bleaching adaptation in isolated vertebrate rod photoreceptors. Proc. Natl. Acad. Sci. USA 80: 2785–2788.

    Article  PubMed  CAS  Google Scholar 

  13. Dodge, F.A.; Knight, B.W.; and Toyoda, J. 1968. Voltage noise in Limulus visual cells. Science 160: 88–90.

    Article  PubMed  Google Scholar 

  14. Dowling, J.E., and Ripps, H. 1970. Visual adaptation in the retina of the skate. J. Gen. Physiol. 56: 491–520.

    Article  PubMed  CAS  Google Scholar 

  15. Engbretson, G.A., and Witkovsky, P. 1978. Rod sensitivity and visual pigment concentration in Xenopus. J. Gen. Physiol. 72: 801–819.

    Article  PubMed  CAS  Google Scholar 

  16. Ernst, W., and Kemp, C.M. 1979. Reversal of photoreceptor bleaching and adaptation by microsecond flashes. Vision Res. 19: 363–365.

    Article  PubMed  CAS  Google Scholar 

  17. Fein, A., and De Voe, R.D. 1973. Adaptation in the ventral eye of Limulus is functionally independent of photochemical cycle, membrane potential and membrane resistance. J. Gen. Physiol. 61: 273–289.

    Article  PubMed  CAS  Google Scholar 

  18. Fein, A., and Hanani, M. 1978. Light-induced increase in discrete waves in the dark in Limulus ventral photoreceptors. Brain Res. 156: 157–161.

    Article  PubMed  CAS  Google Scholar 

  19. Frank, R.N. 1971. Properties of “neural” adaptation in components of the frog electroretinogram. Vision Res. 11: 1113–1123.

    Article  PubMed  CAS  Google Scholar 

  20. Grabowski, S.R., and Pak, W.L. 1975. Intracellular recordings of rod responses during dark adaptation. J. Physiol. 247: 363–391.

    PubMed  CAS  Google Scholar 

  21. Grabowski, S.R.; Pinto, L.H.; and Pak, W.L. 1972. Adaptation in retinal rods of axolotl: intracellular recordings. Science 176: 1240–1243.

    Article  PubMed  CAS  Google Scholar 

  22. Hamdorf, K. 1979. The physiology of invertebrate visual pigments. In Handbook of Sensory Physiology. Comparative Physiology and Evolution of Vision in Invertebrates. A. Invertebrate Photoreceptors, ed. H. Autrum, vol. 7, pt. 6A, pp. 145–224. Berlin: Springer-Verlag.

    Google Scholar 

  23. Hamdorf, K., and Razmjoo, S. 1979. Photoconvertible pigment states and excitation in Calliphora; the induction and properties of the prolonged depolarizing afterpotential. Biophys. Struct. Mech. 5: 137–161.

    Article  Google Scholar 

  24. Hardie, R.C.; Franceschini, N.; and McIntyre, P.D. 1979. Electro-physiological analysis of fly retina. II. Spectral and polarisation sensitivity in R7 and R8. J. Comp. Physiol. 133: 23–39.

    Google Scholar 

  25. Hillman, P.; Hochstein, S.; and Minke, B. 1983. Transduction in invertebrate photoreceptors. Role of pigment bistability. Physiol. Rev. 63: 668–772.

    PubMed  CAS  Google Scholar 

  26. Hochstein, S.; Minke, B.; and Hillman, P. 1973. Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process. J. Gen. Physiol. 62: 105–128.

    Article  PubMed  CAS  Google Scholar 

  27. Kühn, H. 1978. Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry 17: 4389–4395.

    Article  PubMed  Google Scholar 

  28. Kühn, H.; Bennett, N.; Michel-Villaz, M.; and Chabre, M. 1981. Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analysis from light-scattering changes. Proc. Natl. Acad. Sci. USA 78: 6873–6877.

    Article  PubMed  Google Scholar 

  29. Kühn, H., and Dryer, W.J. 1972. Light-dependent phosphorylation of rhodopsin by ATP. FEBS Lett. 20: 1–6.

    Article  PubMed  Google Scholar 

  30. Lamb, T.D. 1980. Spontaneous quantal events induced in toad rods by pigment bleaching. Nature 287: 349–351.

    Article  PubMed  CAS  Google Scholar 

  31. Lamb, T.D. 1981. The involvement of rod photoreceptors in dark adaptation. Vision Res. 21: 1773–1782.

    Article  PubMed  CAS  Google Scholar 

  32. Larrivee, D.C.; Conrad, S.K.; Stephenson, R.S.; and Pak, W.L. 1981. Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster. J. Gen. Physiol. 78: 521–545.

    Article  PubMed  CAS  Google Scholar 

  33. Liebman, P.A., and Pugh, E.N. 1980. ATP mediates rapid reversal of cyclic GMP phosphodiesterase activation in visual receptor membrane. Nature 287: 734–736.

    Article  PubMed  CAS  Google Scholar 

  34. Lo, M.-V.C., and Pak, W.L. 1978. Desensitization of peripheral photoreceptors shown by blue-induced decrease in transmittance of Drosophila rhabdomeres. Nature 273: 722–774.

    Article  Google Scholar 

  35. Maaz, G.; Nagy, K.; Stieve, H.; and Klomfass, J. 1981. The electrical light response of the Limulus ventral nerve photoreceptor, a superposition of distinct components — observable by variation of the state of light adaptation. J. Comp. Physiol. 141: 303–310.

    Article  Google Scholar 

  36. Maaz, G., and Stieve, H. 1980. The correlation of the receptor potential with the light induced transient increase in intracellular calcium-concentration measured by absorption change of Arsenazo III injection into Limulus ventral nerve photoreceptor cell. Biophys. Struct. Mech. 6: 191–208.

    Article  PubMed  CAS  Google Scholar 

  37. Minke, B. 1979. Transduction in photoreceptors with bistable pigments: intermediate processes. Biophys. Struct. Mech. 5: 163–174.

    Article  Google Scholar 

  38. Minke, B. 1982. Light-induced reduction in excitation efficiency in the trp mutant of Drosophila. J. Gen. Physiol. 79: 361–385.

    Article  PubMed  CAS  Google Scholar 

  39. Minke, B.; Hochstein, S.; and Hillman, P. 1973. Antagonistic process as source of visible-light suppression of afterpotential in Limulus UV photoreceptors. J. Gen. Physiol. 62: 787–791.

    Article  PubMed  CAS  Google Scholar 

  40. Minke, B., and Kirschfeld K. 1979. The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarho-dopsin. J. Gen. Physiol. 73: 517–540.

    Article  PubMed  CAS  Google Scholar 

  41. Minke, B., and Kirschfeld, K. 1984. Non-local interactions between light induced processes in Calliphora photoreceptors. J. Comp. Physiol. A 154: 175–187.

    Article  Google Scholar 

  42. Minke, B.; Wu, C.-F.; and Pak, W.L. 1975. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258: 84–87.

    Article  PubMed  CAS  Google Scholar 

  43. Minke, B.; Wu, C.-F.; and Pak, W.L. 1975. Isolation of light-induced response of central retinular cells from electroretinogram of Drosophila. J. Comp. Physiol. 98: 345–355.

    Article  Google Scholar 

  44. Nagy, K., and Stieve, H. 1983. Changes in intracellular calcium ion concentration, in the course of dark adaptation measured by arsenazo III in the Limulus photoreceptor. Biophys. Struct. Mech. 9: 207–223.

    Article  Google Scholar 

  45. Paulsen, R., and Bentrop, J. 1984. Reversible phosphorylation of opsin induced by irradiation of blowfly retinae. J. Comp. Physiol. A 155: 39–45.

    Article  CAS  Google Scholar 

  46. Paulsen, R., and Hopp, I. 1978. Light-activated phosphorylation of cephalopod rhodopsin. FEBS Lett. 96: 55–58.

    Article  PubMed  CAS  Google Scholar 

  47. Paulsen, R., and Rudophi, P. 1980. Rhodopsin phosphorylation in the frog retina: Analysis by autoradiography. Neurochemistry 1: 287–297.

    Article  CAS  Google Scholar 

  48. Pepperberg, D.R. 1984. Rhodopsin and visual adaptation: Analysis of photoreceptor thresholds in the isolated skate retina. Vision Res. 24: 357–366.

    Article  PubMed  CAS  Google Scholar 

  49. Pepperberg, D.R.; Lurie, M.; Brown, P.K.; and Dowling, J.E. 1976. Visual adaptation: effects of externally applied retinal on the light-adapted, isolated skate retina. Science 191: 394–396.

    Article  PubMed  CAS  Google Scholar 

  50. Pugh, E.N., Jr. 1975. Rushton’s paradox: rod dark adaptation after flash photolysis. J. Physiol. 248: 413–431.

    PubMed  CAS  Google Scholar 

  51. Rushton, W.A.H. 1965. Bleached rhodopsin and visual adaptation. J. Physiol. 181: 645–655.

    PubMed  CAS  Google Scholar 

  52. Saibil, H., and Michel-Villaz, M. 1984. Squid rhodopsin and GTP-binding protein crossreact with vertebrate photoreceptor enzymes. Proc. Natl. Acad. Sci. USA 81: 5111–5115.

    Article  PubMed  CAS  Google Scholar 

  53. Shichi, H., and Somers, R.L. 1978. Light-dependent phosphorylation of rhodopsin. J. Biol. Chem. 253: 7040–7046.

    PubMed  CAS  Google Scholar 

  54. Shichi, H., and Williams, T.C. 1979. Rhodopsin phosphorylation suggests biochemical heterogeneities of retinal rod disks. J. Supramol. Struct. 12: 419–424.

    Article  PubMed  CAS  Google Scholar 

  55. Sitaramayya, A., and Liebman, P.A. 1983. Phosphorylation of rhodopsin and quenching of cyclic GMP phosphodiesterase activation by ATP at weak bleaches. J. Biol. Chem. 258: 12106–12109.

    PubMed  CAS  Google Scholar 

  56. Stark, W.S.; Ivanyshyn, A.M.; and Hu, K.G. 1976. Spectral sensitivities and photopigments m adaptation of fly visual receptors. Naturwiss. 63: 513–518.

    Article  PubMed  CAS  Google Scholar 

  57. Stieve, H., and Bruns, M. 1983. Bump latency distribution and bump adaptation of Limulus ventral nerve photoreceptor in varied extracellular calcium concentration. Biophys. Struct. Mech. 9: 329–339.

    Article  Google Scholar 

  58. Stieve, H.; Bruns, M; and Gaube, H. 1984. The sensitivity shift due to light adaptation depending on the extracellular calcium ion concentration in Limulus ventral nerve photoreceptor. Z. Naturforsch. 39c: 662–679.

    CAS  Google Scholar 

  59. Stryer, L. 1983. Transducin and the cyclic GMP phosphodiesterase: Amplifier proteins in vision. Cold S.H. Symp. Quant. Biol. 48: 841–852.

    CAS  Google Scholar 

  60. Tsukahara, Y., and Horridge, G.A. 1978. The distribution of bumps in the tail of the locust photoreceptor afterpotential. J. Exp. Biol. 73: 1–14.

    PubMed  Google Scholar 

  61. Vandenberg, C.A., and Montai, M. 1984. Light-regulated biochemical events in invertebrate photoreceptors. 2. Light regulated phosphorylation of rhodopsin and phosphoinositides in squid photoreceptor membranes. Biochemistry 23: 2347–2352.

    CAS  Google Scholar 

  62. Wilden, U., and Kühn, H. 1982. Light-dependent phosphorylation of rhodopsin: Number of phosphorylation sites. Biochemistry 21: 3014–3022.

    Article  PubMed  CAS  Google Scholar 

  63. Witkovsky, P.; Gallin, E.; Hollyfield, J.G.; Ripps, H.; and Bridges, C.D.B. 1976. Photoreceptor thresholds and visual pigment levels in normal and vitamin A-deprived Xenopus tadpoles. J. Neurophysiol. 39: 1272–1287.

    PubMed  CAS  Google Scholar 

  64. Wong, F. 1977. Nature of light-induced conductance changes in ventral photoreceptors of Limulus. Nature 276: 76–79.

    Article  Google Scholar 

  65. Wong, F.; Wu, C.-F.; Mauro, A.; and Pak, W.L. 1976. Persistence of prolonged light-induced conductance change in arthropod photoreceptors on recovery from anoxia. Nature 264: 661–664.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stieve

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Minke, B. (1986). Photopigment-dependent Adaptation in Invertebrates — Implications for Vertebrates. In: Stieve, H. (eds) The Molecular Mechanism of Photoreception. Dahlem Workshop Reports, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70444-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70444-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70446-8

  • Online ISBN: 978-3-642-70444-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics