Skip to main content

Advertisement

Log in

Removal of NO from flue gases by absorption to an iron(ii) thiochelate complex and subsequent reduction to ammonia

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE combustion of fossil fuels generates SO2 and NOX pollutants which cause acid rain and urban smog1. Existing flue-gas desulphurization scrubbers involve wet limestone processes which are efficient for controlling SO2 emissions but are incapable of removing water-insoluble nitric oxide. The current technique for postcombustion control of nitrogen oxide emissions, ammonia-based selective catalytic reduction, suffers from various problems2,3, including poisoning of the catalysts by fly ash rich in arsenic or alkali, disposal of spent toxic catalysts and the effects of ammonia by-products on plant components downstream from the reactor. To circumvent the need for separate schemes to control SO2 and NOX, we have developed an iron(ii) thiochelate complex that enhances the solubility of NO in aqueous solution by rapidly and efficiently absorbing NO to form iron nitrosyl complexes. The bound NO is then converted to ammonia by electrochemical reduction, regenerating the active iron(ii) catalyst for continued NO capture. Our results suggest that this process can be readily integrated into existing wet limestone scrubbers for the simultaneous removal of SO2 and NOX

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wark, K. & Warner, C. F. Air Pollution—Its Origin and Control (Harper & Row, New York, 1981).

    Google Scholar 

  2. Moore, T. EPRI Journal 11, 26–33 (1984).

    Google Scholar 

  3. Kokkinos, A. et al. J. Air Waste Mgmt Ass. 42, 1498–1505 (1992).

    Article  CAS  Google Scholar 

  4. Lin, N., Littlejohn, D. & Chang, S. G. Ind. Engng Chem. Process Design Dev. 21, 725–728 (1982).

    Article  CAS  Google Scholar 

  5. Chang, S. G., Littlejohn, D. & Liu, D. K. Ind. Engng Chem. Res. 27, 2156–2161 (1988).

    Article  CAS  Google Scholar 

  6. Liu, D. K. & Chang, S. G. Envir. Sci. Technol. 22, 1196–1200 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Liu, D. K., Frick, L. P. & Chang, S. G. Envir. Sci. Technol. 22, 219–223 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Hishinuma, Y. et al. Bull. chem. Soc. Jap. 52, 2863–2865 (1979).

    Article  CAS  Google Scholar 

  9. Teramoto, M., Hiramine, S., Shimada, Y., Sugimoto, Y. & Teranishi, H. J. Chem. Engng. Jap. 11, 450–457 (1978).

    Article  CAS  Google Scholar 

  10. Chang, S. G. in Fossil Fuel Utilization, Environmental Concern (eds Maskuszewski, R. & Blaustein, B. D.) 159–175 (ACS Symp. Ser. No. 319, Am. Chem. Soc, Washington DC, 1986).

    Book  Google Scholar 

  11. Littlejohn, D. & Chang, S. G. Environ. Sci. Technol. 18, 305–310 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Littlejohn, D. & Chang, S. G. Analyt. Chem. 58, 158–160 (1986).

    Article  CAS  Google Scholar 

  13. Zagal, J. H. & Herrera, P. Electrochim. Acta 30, 449–454 (1985).

    Article  CAS  Google Scholar 

  14. Wong, C. H. & Wang, K. T. J. chin. chem. Soc. 25, 149–151 (1977).

    Article  Google Scholar 

  15. Li, H. & Fang, W. Ind. Engng. Chem. Res. 27, 770–774 (1988).

    Article  CAS  Google Scholar 

  16. Smith, K. et al. Enhanced NOx Removal in Wet Scrubbers Using Metal Chelates (US DOE Contract DE-AC2290PC90362, Pittsburgh Energy Technology Center, 1992).

    Book  Google Scholar 

  17. Uchida, S., Chang, C. S. & Wen, C. Y. Can. J. Chem. Eng. 55, 392–396 (1977).

    Article  CAS  Google Scholar 

  18. Hattori, H. et al. Kogai 13, 35–77 (1978).

    CAS  Google Scholar 

  19. Chemical Marketing Reporter 243 (6), 30–38 (1993).

  20. Petrun'kin, V. Ukr. khim. Zh. 22, 603–607 (1956).

    CAS  Google Scholar 

  21. Eskinazi, D. et al. J. Air Waste Mgmt Ass. 39, 1131–1139 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, E., Chang, SG. Removal of NO from flue gases by absorption to an iron(ii) thiochelate complex and subsequent reduction to ammonia. Nature 369, 139–141 (1994). https://doi.org/10.1038/369139a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369139a0

  • Springer Nature Limited

This article is cited by

Navigation