Skip to main content
Log in

Dynamic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MOTOR circuits are often thought to be physically separate from their neuromodulatory systems1,2. We report here a counter example, where neurons within a circuit appear to modulate synaptic properties of that same circuit during its normal operation. The dorsal swim interneurons (DSIs) are members of the central pattern generator circuit for escape swimming in the mollusc Tritonia diomedea3. However, DSI stimulation also rapidly enhances the synaptic potentials evoked by another neuron in the same circuit onto its follower cells. This modulatory action appears to be mediated by serotonin (5-hydroxytryptamine); the DSIs are serotonin-immunoreactive4, and bath-application of serotonin mimics and occludes the effect of DSIs. These results indicate that during the escape swim, circuit connection strengths are dynamically controlled by the activity of neurons within the circuit itself. This 'intrinsic neuromodulation' may be important for the animal's initial decision to swim, the generation of the swim motor programme itself, and certain types of learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris-Warrick, R. M. & Marder, E. A. Rev. Neurosci. 14, 39–57 (1991).

    Article  CAS  Google Scholar 

  2. Kaczmarek, L. K. & Levitan, I. B. Neuromodulation: The Biochemical Control of Neuronal Excitability (Oxford Univ. Press, New York, 1987).

    Google Scholar 

  3. Getting, P. A., Lennard, P. R. & Hume, R. I. J. Neurophysiol. 44, 151–164 (1980).

    Article  CAS  Google Scholar 

  4. Getting, P. A., McClellan, A. D. & Li, M. Soc. Neurosci. Abstr. 11, 1023 (1985).

    Google Scholar 

  5. Getting, P. A. & Dekin, M. S. in Model Neural Networks and Behavior (ed. Selverston, A. I.) 3–20 (Plenum, New York, 1985).

    Book  Google Scholar 

  6. Frost, W. N. & Getting, P. A. Soc. Neurosci. Abstr. 15, 1118 (1989).

    Google Scholar 

  7. Getting, P. A. J. Neurophysiol. 46, 65–79 (1981).

    Article  CAS  Google Scholar 

  8. Katz, P. S. & Frost, W. N. Soc. Neurosci. Abstr. 19, 1700 (1993).

    Google Scholar 

  9. Getting, P. A. in Symposia of the Society for Experimental Biology No. 37; Neural Origin of Rhythmic Movements (eds Roberts, A. & Roberts, B. L.) 89–128 (Cambridge Univ. Press, New York, 1983).

    Google Scholar 

  10. Getting, P. A. & Dekin, M. S. J. Neurophysiol. 53, 466–480 (1985).

    Article  CAS  Google Scholar 

  11. Getting, P. A. A. Rev. Neurosci. 12, 185–204 (1989).

    Article  CAS  Google Scholar 

  12. Abraham, F. D. & Willows, A. O. D. Comm. Behav. Biol. 6, 271–280 (1971).

    Google Scholar 

  13. Frost, W. N., Brown, G. & Getting, P. A. Soc. Neurosci. Abstr. 14, 607 (1988).

    Google Scholar 

  14. Katz, P. S. & Harris-Warrick, R. M. Trends Neurosci. 13, 367–373 (1990).

    Article  CAS  Google Scholar 

  15. Harris-Warrick, R. M. in Neural Control of Rhythmic Movements in Vertebrates (eds Cohen, A. H., Rossignol, S. & Grillner, S.) 285–331 (Wiley, New York, 1988).

    Google Scholar 

  16. Jordan, L. M., Brownstone, R. M. & Noga, B. R. Curr. Opin. Neurobiol. 2, 794–801 (1992).

    Article  CAS  Google Scholar 

  17. Hawkins, R. D., Castellucci, V. F. & Kandel, E. R. J. Neurophysiol. 45, 315–326 (1981).

    Article  CAS  Google Scholar 

  18. Cropper, E. C. et al. Proc. natn. Acad. Sci. U.S.A. 84, 3486–3490 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Whim, M. D. & Lloyd, P. E. J. Neurosci. 10, 3313–3322 (1990).

    Article  CAS  Google Scholar 

  20. Bishop, C. A., Wine, J. J., Nagy, F. & O'Shea, M. R. J. Neurosci. 7, 1769–1779 (1987).

    Article  CAS  Google Scholar 

  21. Katz, P. S. & Harris-Warrick, R. M. J. Neurophysiol. 62, 571–581 (1989).

    Article  CAS  Google Scholar 

  22. Chiel, H. J., Weiss, K. R. & Kupfermann, I. Trends Neurosci. 13, 223–227 (1990).

    Article  CAS  Google Scholar 

  23. Nusbaum, M. P., Weimann, J. M., Golowasch, J. & Marder, E. J. Neurosci. 12, 2706–2714 (1992).

    Article  CAS  Google Scholar 

  24. Taghert, P. H. & Willows, A. O. D. J. comp. Physiol. 123, 253–259 (1978).

    Article  Google Scholar 

  25. Willows, A. O. D., Dorsett, D. A. & Hoyle, G. J. Neurobiol. 4(3), 207–237 (1973).

    Article  CAS  Google Scholar 

  26. Hume, R. I., Getting, P. A. & Del Beccaro, M. A. J. Neurophysiol. 47, 60–74 (1982).

    Article  CAS  Google Scholar 

  27. Hume, R. I., Getting, P. A. J. Neurophysiol. 47, 75–90 (1982).

    Article  CAS  Google Scholar 

  28. Brown, G. D. & Willows, A. O. D. Soc. Neurosci. Abstr. 17, 549 (1991).

    Google Scholar 

  29. Weinreich, D., McCaman, M. W., McCaman, R. E. & Vaughn, J. E. J. Neurochem. 20, 969–976 (1973).

    Article  CAS  Google Scholar 

  30. Croll, R. P. & Chiasson, B. J. J. comp. Neurol. 280, 122–142 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katz, P., Getting, P. & Frost, W. Dynamic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit. Nature 367, 729–731 (1994). https://doi.org/10.1038/367729a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367729a0

  • Springer Nature Limited

This article is cited by

Navigation