Skip to main content
Log in

Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE high electrical conductivity of the lower continental crust, as inferred from geophysical measurements1, has defied a simple explanation. Both pore-saturating brines2 and interconnected carbon films3–5 have been proposed as conducting pathways, but their relative importance remains uncertain, and may vary from place to place6. So far, attempts to address this question in the laboratory have had to rely on samples of metamorphic rock collected from surface exposures7–10. Although these rocks almost certainly originated in the lower crust, chemical alteration during their transport to, and residence at, the surface is likely to have affected their conducting properties. Here we report conductivity data for pristine crustal rocks recovered from depths of up to 4.6 km in the KTB boreholes in southern Germany. Our results show that the electrical conductivity of accessory phases such as Fe–Ti oxides and sulphides can enhance, or even surpass, the high conductivity produced by saline fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, A. G. in The Lower Continental Crust (eds Fountain, D. M., Arculus, R. J. & Kay, R. W.) 81–143 (Elrevier, New York, 1992).

    Google Scholar 

  2. Bailey, R. C., Craven, J. A., Macnae, J. C. & Polzer, B. D. Nature 340, 136–138 (1989).

    Article  ADS  Google Scholar 

  3. Glover, P. W. J. & Vine, F. J. Nature 360, 723–726 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Frost, B. R., Fyfe, W. S., Tazaki, K. & Chan, T. Nature 340, 134–136 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Losecke, W., Knödel, K. & Müller, W. Geophys. J. R. astr. Soc. 58, 169–179 (1979).

    Article  ADS  Google Scholar 

  6. Duba, A. G. & Shankland, T. J. Geophys. Res. Lett. 9, 1271–1274 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Lee, C. D., Vine, F. J. & Ross, R. G. Geophys. J. R. astr. Soc. 72, 353–371 (1983).

    Article  ADS  Google Scholar 

  8. Brace, W. F., Orange, A. S. & Madden, T. R. J. geophys. Res. 70, 5669–5678 (1965).

    Article  ADS  Google Scholar 

  9. Katsube, T. J., Mareschal, M. & Aucoin, F. Geol. Surv. Pap. Can. 91-E, 257–265 (1991).

    Google Scholar 

  10. Katsube, T. J., Scromeda, N., Mareschal, M. & Bailey, R. C. Geol. Surv. Pap. Can. 92-1E, 225–236 (1992).

    Google Scholar 

  11. Llera, F. J., Sato, M., Nakatsuka, K. & Yokoyama, H. Geophysics 55, 576–585 (1990).

    Article  ADS  Google Scholar 

  12. Lich, S., Duyster, J., Godizart, G., Keyssner, S. & de Wall, H. in KTB Report 92-2 (eds Emmermann, R., Dietrich, H. G., Lauterjung, J. & Wöhrl, Th.) B1–B83 (Schweirzerbart'sche, Stuttgart, 1992).

  13. Duba, A. Acta Geodaet. Geophys. et Montanist. Acad. Sci. Hung. 11, 485–495 (1976).

    Google Scholar 

  14. Duba, A. in High Pressure Researches in Geoscience (ed. Schreyer, W.) 375–281 (Schweirzerbart'sche, Stuttgart, 1982).

    Google Scholar 

  15. Shankland, T. J. Nature 340, 102 (1989).

    Article  ADS  Google Scholar 

  16. Duba, A., Huenges, E., Nover, G., Will, G. & Jödicke, H. Geophys. J. 94, 413–419 (1988).

    Article  ADS  Google Scholar 

  17. Lin, W. & Daily, W. J. Geophys. Res. 93, 13047–13056 (1988).

    Article  ADS  Google Scholar 

  18. Olhoeft, G. R. in Physical Properties of Rocks and Minerals (eds Touloukian, N. S., Judd, W. R. & Roy, R. F.) 257–328 (McGraw-Hill, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duba, A., Heikamp, S., Meurer, W. et al. Evidence from borehole samples for the role of accessory minerals in lower-crustal conductivity. Nature 367, 59–61 (1994). https://doi.org/10.1038/367059a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367059a0

  • Springer Nature Limited

This article is cited by

Navigation