Skip to main content

Advertisement

Log in

Electrical conductivity of the Earth's lower mantle

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE electrical conductivity of the Earth's lower mantle constrains both the propagation to the surface of geomagnetic disturbances in the core and the nature of core–mantle coupling. Extrapolations of laboratory measurements on materials representative of the lower mantle agree weakly1,2 or not at all3,4 with recent geophysical models5–8 of lower-mantle electrical conductivity based on variations of magnetic and electrical fields measured at the Earth's surface. Here we report d.c. conductivity measurements on samples with compositions approximating that of the lower mantle, at pressures of 1.2 to 40 GPa and temperatures in the range 20 to 400 °C. Our results agree with some of those obtained previously1,2. But in contrast to this previous work, we extrapolate the results to lower-mantle conditions by adopting a functional form for the conductivity that incorporates the effect of pressure as well as temperature. The resulting estimates of conductivity are in agreement with the geophysical determinations5–8. We find that, because of a very weak dependence on temperature, pressure and composition, the conductivity is likely to vary by no more than about a factor of five across the entire lower mantle, reaching a maximum value of only 3–10 S m−1. Lateral temperature variations as large as a few hundred degrees will therefore be hard to detect geophysically, and the compositionally distinct D″ layer at the base of the lower mantle remains the only possible location for a highly conducting layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peyronneau, J. & Poirier, J.-P. Nature 342, 537–539 (1989).

    Article  ADS  Google Scholar 

  2. Poirier, J.-P. & Peyronneau, J. in High—Pressure Research: Application to Earth and Planetary Sciences Geophys. monogr. No. 67 (eds Syono, Y. & Manghnani, M. H. 77–87 (Am. geophys. Un., Washington DC, 1992).

    Google Scholar 

  3. Li, X. & Jeanloz, R. J. geophys. Res. 96, 6113–6120 (1991).

    Article  ADS  Google Scholar 

  4. Li, X. & Jeanloz, R. J. geophys. Res. 95, 5067–5078 (1990).

    Article  ADS  Google Scholar 

  5. Egbert, G. D. & Booker, J. R. J. geophys. Res. 97, 15099–15112 (1992).

    Article  ADS  Google Scholar 

  6. Tarits, P. & Wahr, J. EOS 73, 523 (1992).

    Google Scholar 

  7. Constable, S. J. Geomag. Geoelectr. 45, 1–22 (1993).

    Article  Google Scholar 

  8. Schultz, A., Kurtz, R. D., Chave, A. D. & Jones, A. G. Geophys. Res. Lett. (in the press).

  9. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  10. Shankland, T. J. & Brown, J. M. Phys. Earth planet. Inter. 38, 51–58 (1985).

    Article  ADS  Google Scholar 

  11. Hirsch, L. M. & Shankland, T. J. geophys. Res. Lett. 18, 1305–1308 (1993).

    Article  ADS  Google Scholar 

  12. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vettering, W. T. Numerical Recipes 498–538 (Cambridge Univ. Press, 1986).

    Google Scholar 

  13. Li, X., Ming, L.-C., Manghnani, M. H., Wang, Y. & Jeanloz, R. J. geophys. Res. 98, 501–508 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Hirsch, L. M. & Shankland, T. J. geophys. Res. Lett. 18, 1305–1308 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Gautason, B. & Muehlenbachs, K. Science 260, 518–521 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Misener, D. J. in Geochemical Transport and Kinetics (eds Hofmann, A. W., Giletti, B. J., Yoder, H. S. Jr. & Yund, R. A.) 117–129 (Carnegie Instn of Wash., Washington DC, 1974).

    Google Scholar 

  17. Guyot, F., Madon, M., Poirier, J.-P. & Peyronneau, J. Earth planet. Sci. Lett. 90, 52–64 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Wood, B. J. & Nell, J. Nature 351, 309–311 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Li, X. & Jeanloz, R. J. geophys. Res. 95, 21609–21612 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Constable, S., Shankland, T. J. & Duba, A. G. J. geophys. Res. 97, 3397–3404 (1992).

    Article  ADS  Google Scholar 

  21. Achache, J., LeMouël, J. L. & Courtillot, V. Geophys. J. R. ast. Soc. 65, 579–601 (1981).

    Article  ADS  Google Scholar 

  22. Lay, T. EOS 70, 49–59 (1989)

    Article  ADS  Google Scholar 

  23. Poirier, J.-P. & le Mouël, J. L. Phys. Earth planet. Inter. 73, 29–37 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankland, T., Peyronneau, J. & Poirier, JP. Electrical conductivity of the Earth's lower mantle. Nature 366, 453–455 (1993). https://doi.org/10.1038/366453a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366453a0

  • Springer Nature Limited

This article is cited by

Navigation