Skip to main content
Log in

Deep electrical conductivity features in the transition zone from the Pacific to Eurasia

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Understanding the processes that occur in the transition from the Pacific Ocean to Eurasia is key to constructing the tectonic models of the Earth’s shells and the convection models of the upper mantle. The electromagnetic methods permit estimating the temperature and fluid content (and/or carbon (graphite) content) in the Earth’s interior. These estimates are independent of the traditionally used estimates based on seismic methods because the dependence of electrical conductivity on the physical properties of the rock is based on different principles than the behavior of the elastic waves. The region is characterized by a complicated geological structure with intense three-dimensional (3D) surface heterogeneities, which significantly aggravate the retrieval of the information about the deep horizons in the structure of the Earth’s mantle from the observed electromagnetic (EM) fields. The detailed analysis of the nature of the deep electrical conductivity and structural features of the transition from the Pacific to Eurasia included numerical modeling of the typical two- and three-dimensional models has been carried out. Based on this analysis, the approaches that increase the reliability of the interpretation of the results of the EM studies are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alekseev, D.A., Palshin, N.A., and Varentsov, I.M, Magnetotelluric dispersion relations in a two-dimensional model of the coastal effect, Izv., Phys. Solid Earth, 2009, vol. 45, no. 2, pp. 167–170.

    Article  Google Scholar 

  • Avdeiko, G.P. and Palueva, A.A, Historic analysis of seismicity and seismic hazard of the Kamchatkan subduction zone, Vestn. KRAUNTs, Nauki Zemle, 2010, vol. 15, no. 1, pp. 69–89.

    Google Scholar 

  • Baba, K., Tarits, P., Chave, A.D., Evans, R.L., Hirth, G., and Mackie, R.L, Electrical structure beneath the northern MELT area of the East Pacific Rise, 15°45' S, Geophys. Res. Lett., 2006, vol. 33, pp. 335–345.

    Google Scholar 

  • Baba, K., Utada, H., Goto, T., Kasaya, T., Shimizu, H., and Tada, N, Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data, Phys. Earth Planet. Inter., 2010, vol. 183, pp. 44–62.

    Article  Google Scholar 

  • Baba, K., Tada, N., Zhang, L., Liang, P., Shimizu, H., and Utada, H, Is the electrical conductivity of the northwestern Pacific upper mantle normal?, Geochem. Geophys. Geosyst., 2013, vol. 14, pp. 4969–4979. doi 10.1002/2013GC004997

    Article  Google Scholar 

  • Berdichevsky, M.N., Dmitriev, V.I., and Kulikov, V.A, On the normalization of the magnetotelluric field by fluid-saturated faults, Izv. Akad. Nauk, Fiz. Zemli, 1993, no. 11, pp. 45–54.

    Google Scholar 

  • Berdichevsky, M.N. and Kulikov, V.A, Sensitivity of deep magnetotelluric sounding to the presence of fluid-saturated faults, Izv. Akad. Nauk, Fiz. Zemli, 1994, no. 6, pp. 39–49.

    Google Scholar 

  • Brusilovskii, Yu.V., Ivanenko, A.N., Zhukovin, A.Yu., and Tsovbun, N.M, Geomagnetic studies of central Kuril- Kamchatka Island Arc, Tikhookean. Geol., 2012, no. 6, pp. 114–120.

    Google Scholar 

  • Chave, AD.and Cox, C.S, Electromagnetic induction by ocean currents and the conductivity of the oceanic lithosphere, J. Geomagn. Geoelectr., 1983, vol. 35, pp. 491–499.

    Article  Google Scholar 

  • Chave, A.D., Seafloor electromagnetic exploration methods, in: Gorga Ridge. A Seafloor Spreading Center in the United States Exclusive Economic Zone, McMurray, R., Ed., New York: Springer, 1990, pp. 191–199.

    Google Scholar 

  • Chave, A.D., Flossadottir, A.H., and Cox, C.S, Some comments on seabed propagation of ULF/ELF electromagnetic fields, Radio Sci., 1990a, vol. 25, pp. 825–836.

    Article  Google Scholar 

  • Chave, A.D., Filloux, J.H., Schultz, A., Groom, R.M., and Tarits, P, One dimensional magnetotelluric soundings from BEMPEX, Abstracts of 10th Workshop on Electromagnetic Induction in the Earth, Ensenada, Mexico, August 22–29, 1990b.

    Google Scholar 

  • Constable, S.C., Shankland, T.J., and Duba, A, The electrical conductivity of an isotopic olivine mantle, J. Geophys. Res., 1992, vol. 97, pp. 3397–3404.

    Article  Google Scholar 

  • Constable, S.C., SEO3. A new model of olivine electrical conductivity, Geophys. J. Int., 2006, vol. 166, pp. 435–437.

    Article  Google Scholar 

  • Cox, C.S, Electromagnetic induction in the oceans and inferences on the constitution of the Earth, Geophys. Surv., 1980, vol. 4, pp. 137–156.

    Article  Google Scholar 

  • Cox, C.S., Constable, S.C., Chave, A.D., and Webb, S.C, Controlled-source electromagnetic sounding of the oceanic lithosphere, Nature, 1986, vol. 320, pp. 52–54.

    Article  Google Scholar 

  • Dosso, H.W., A review of analogue model studies of the coast effect, Phys. Earth Planet. Inter., 1973, vol. 7, pp. 294–302.

  • Fainberg, E.B., Fiskina, M.V., and Rotanova, N.M., Experimental data on global electromagnetic sounding of the Earth, in Issledovaniya prostranstvenno-vremennoi struktury geomagnitnogo polya (Studies of Spatiotemporal Structure of Geomagnetic Field), Moscow: Nauka, 1977, pp. 102–113.

    Google Scholar 

  • Fukao, Y., Obayashi, M., and Nakakuki, T., and the Deep Slab Project Collab., Stagnant slab: a review, Annu. Rev. Earth Planet. Sci., 2009, vol. 37, pp. 19–46.

    Article  Google Scholar 

  • Heinson, G.S. and Lilley, F.E.M, An application of thinsheet electromagnetic modelling to the Tasman Sea, Phys. Earth Planet. Inter., 1993, vol. 81, pp. 231–251.

    Article  Google Scholar 

  • Heinson, G.S., White, A., Law, L.K., Hamano, Y., Utada, H., Yukutake, T., Segawa, J., and Toh, H., EMRIDGE: the electromagnetic investigation of the Juan de Fuca Ridge, Marine Geophys. Res., 1993, vol. 15, pp. 77–100.

    Article  Google Scholar 

  • Ichiki, M., Baba, K., Obayashi, M., and Utada, H, Water content and geotherm in the upper mantle above the stagnant slab: interpretation of electrical conductivity and seismic P-wave velocity models, Phys. Earth Planet. Inter., 2006, vol. 155, pp. 1–15.

    Article  Google Scholar 

  • Jones, A.G., Fullea, J., Evans, R.L., and Muller, M.R, Water in cratonic lithosphere: calibrating laboratory determined models of electrical conductivity of mantle minerals using geophysical and petrological observations, Geochem. Geophys. Geosyst, 2012, vol. 13, pp. 1–27.

    Article  Google Scholar 

  • Jones, A.G., Fishwick, S., Evans, R.L., Muller, M.R., Fullea, J, Velocity-conductivity relations for cratonic lithosphere and their application: example of Southern Africa, Geochem. Geophys. Geosyst., 2013, vol. 14, no. 4, pp. 806–827.

    Article  Google Scholar 

  • Karato, S, The role of hydrogen in the electrical conductivity of the upper mantle, Nature, 1990, vol. 347, pp. 272–273.

    Article  Google Scholar 

  • Karato, S, On the origin of the asthenosphere, Earth Planet. Sci. Lett., 2012, vol. 321-322, pp. 95–103.

    Article  Google Scholar 

  • Katsura, T. and Ito, E, The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 1989, vol. 94, no. B11, pp. 15663–15670.

    Article  Google Scholar 

  • Kerrik, D, Serpentinite seduction, Science, 2002, vol. 298, pp. 1344–1345.

    Article  Google Scholar 

  • Key, K, Marine electromagnetic studies of seafloor resources and tectonics, Surv. Geophys., 2012, vol. 33, pp. 135–167.

    Article  Google Scholar 

  • Koyama, T., Shimizu, H., Utada, H., Ichiki, M., Ohtani, E., and Hae, R, Water Content in the Mantle Transition Zone beneath the North Pacific Derived from the Electrical Conductivity Anomaly, AGU Geophys. Monogr. Ser., 2006, vol. 168, pp. 171–179.

    Google Scholar 

  • Kuvshinov, A. and Utada, H, Anomaly of the geomagnetic Sq variation in Japan: effect from 3-D subterranean structure or the ocean effect?, Geophys. J. Int., 2010, vol. 183, pp. 1239–1247.

    Article  Google Scholar 

  • Lay, T., Ammon, C.J., Kanamori, H., Kim, M.J., and Lian, X, Outer trench-slope faulting and the great 2011 Tohoku (Mw 9.0) earthquake, Earth Planets Space, 2011, vol. 63, pp. 713–718.

    Article  Google Scholar 

  • Lobkovskii, L.I. and Baranov, B.V, Keyboard model of strong earthquakes in the island arcs and active continental margins, Dokl. Akad. Nauk SSSR, 1984, vol. 275, no. 4, pp. 7–17.

    Google Scholar 

  • Mackie, R.L. and Madden, T.R, Three-dimensional magnetotelluric inversion using conjugate gradients, Geophys. J. Int., 1993, vol. 115, pp. 215–229.

    Article  Google Scholar 

  • Marderfel’d, B.E., Beregovoi effekt v geomagnitnykh variatsiyakh (Coast Effect in Geomagneti Variations), Moscow: Nauka, 1977.

    Google Scholar 

  • Moroz, Yu.F., Laguta, N.A., and Moroz, T.A, Magnetotelluric sounding of Kamchatka, J. Volkanol. Seismol., 2008, vol. 2, no. 2, pp. 93–93.

    Google Scholar 

  • Nikiforov, V.M., Palshin, N.A., Starzhinsky, S.S., and Kuznetsov, V.A, Numerical Modeling of the Three-Dimensional Coastal Effect in the Primorski Region, Izv., Phys. Solid Earth, 2004, vol. 40, no. 8, pp. 660–671.

    Google Scholar 

  • Ohtani, E. and Zhao, D, The role of water in the deep upper mantle and transition zone: dehydration of stagnant slabs and its effects on the big mantle wedge, Russ. Geol. Geophys., 2009, vol. 50, pp. 1073–1078.

    Article  Google Scholar 

  • Okubo, Y., Tsu, H., and Ogawa, K, Estimation of Curie point and geothermal structure of island arcs of Japan, Tectonophysics, 1989, vol. 159, pp. 279–290.

    Article  Google Scholar 

  • Palshin, N.A, Deep seafloor magnetotelluric sounding in the northeastern Pacific, Tikhookean. Geol., 1988a, no. 6, pp. 94–98.

    Google Scholar 

  • Palshin, N.A, On the mathematical model of seafloor MTS, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 1988b, no. 6, pp. 138–140.

    Google Scholar 

  • Palshin, N.A, Oceanic electromagnetic studies: a review, Surv. Geophys., 1996, vol. 17, no. 4, pp. 465–491.

    Article  Google Scholar 

  • Palshin, N.A., Ivanenko, A.N., and Brusilovskii, Yu.V, Interrelation between the anomalous magnetic field, seismicity, and geoelectric structure of the lithosphere in the subduction zone (Tohoku and Kuril island arcs), Materialy XIX Mezhd. nauch. konf. (Shkoly po morskoi geologii), (Proc. XIX Int. Sci. Conf. (Workshop on Marine Geology)), Moscow, November 2011, Moscow: GEOS, 2011, vol. 5, pp. 154–158.

    Google Scholar 

  • Parkinson, W.D. and Jones, F.W, The geomagnetic coast effect, Rev. Geophys. Space Phys., 1979, vol. 17, no. 8, pp. 1999–2015.

    Article  Google Scholar 

  • Pek, J. and Toh, H., Numerical modeling of MT fields in 2D anisotropic structures and with topography and bathymetry considered, in Protokoll uber das Kolloquium elektromagnetische Tiefenforschung, Bahr, K. and Junge, A., Eds., Burg Ludwigstein: Deutsche Geophysikalische Gesellschaft, 1997, pp. 190-199. (18. Kolloquium, Altenberg, 20.03.–24.03.2000)

    Google Scholar 

  • Poe, B.T., Romano, C., Nestola, F., and Smyth, J.R, Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa, Phys. Earth Planet. Inter., 2010, vol. 181, pp. 103–111.

    Article  Google Scholar 

  • Puruker, M. and Clark, D, Mapping and interpretation of lithospheric magnetic field, in Geomagnetic Observations and Models, IAGA Special Sopron Book Series, 2011, vol. 5, pp. 311–337.

    Article  Google Scholar 

  • Rikitake, T., Yokoyama, T., and Sato, S, Anomaly of the geomagnetic Sq variation in Japan and its relation to the subterranean structure, Bull. Earthquake Res. Inst., Univ. Tokyo, 1956, vol. 34, pp. 197–234.

    Google Scholar 

  • Rokityanskii, I.I., Geofizicheskie metody magnitovariatsionnogo zondirovaniya i profilirovaniya (Geophysical Methods of Magnetovariational Sounding and Profiling), Kiev: Naukova dumka, 1972.

    Google Scholar 

  • Rokityanskii, I.I., Induktsionnye zondirovaniya Zemli (Induction Sounding of the Earth), Kiev: Naukova dumka, 1981.

    Google Scholar 

  • Schmucker, U, Anomalies of geomagnetic variations in the south-western United States, J. Geomagn. Geoelectr., 1964, vol. 15, pp. 193–221.

    Article  Google Scholar 

  • Schmucker, U, Regional induction studies: a review of methods and results, Phys. Earth Planet. Inter., 1973, vol. 7, pp. 365–378.

    Article  Google Scholar 

  • Shimizu, H., Utada, H., Baba, K., Koyama, T., Obayashi, M., and Fukao, Y., Three-dimensional imaging of electrical conductivity in the mantle transition zone beneath the North Pacific Ocean by a semi-global induction study, Phys. Earth Planet. Inter., 2010, vol. 183, pp. 252–269.

    Article  Google Scholar 

  • Simpson, F. and Tommasi, A, Hydrogen diffusivity and electrical anisotropy of a peridotite mantle, Geophys. J. Int., 2005, vol. 160, pp. 1092–1102.

    Article  Google Scholar 

  • Taira, A, Tectonic evolution of the Japanese island arc system, Ann. Rev. Earth Planet. Sci., 2001, vol. 29, pp. 109–34.

    Article  Google Scholar 

  • Utada, H., Koyama, T., Shimizu, H., and Chave, A.D., A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region, Geophys. Rev. Lett., 2003, vol. 30, no. 4, p. 1194.

    Article  Google Scholar 

  • Utada, H., Koyama, T., Obayashi, M., and Fukao, Y., A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry, Earth Planet. Sci. Lett., 2009, vol. 281, pp. 249–257.

    Article  Google Scholar 

  • Utada, H. and Baba, K, Estimating the electrical conductivity of the melt phase of a partially molten asthenosphere from seafloor magnetotelluric sounding data, Phys. Earth Planet. Inter., 2014, vol. 227, pp. 41–47.

    Article  Google Scholar 

  • Vanyan, L.L., Berdichevsky, M.N., Vasin, N.D., et al., On the normal geoelectric cross section, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1980, no. 2, pp. 73–76.

    Google Scholar 

  • Vanyan, L.L. and Shilovskii, P.P., Glubinnaya elektroprovodnost' okeanov i kontinentov (Deep Electrical Conductivity of the Oceans and Continents), Moscow: Nauka, 1983.

    Google Scholar 

  • Vanyan, L.L. and Palshin, N.A, Seafloor MTS distortions in coastal zone, Izv. Akad Nauk SSSR, Fiz. Zemli, 1990, no. 8, pp. 62–78.

    Google Scholar 

  • Vanyan, L.L., Koldaev, D.L., Palshin, N.A., Cox, C., and Constable, S, On anisotropy of the electrical conductivity of the oceanic lithosphere, Izv. Akad. Nauk, Fiz. Zemli, 1992, no. 5, pp. 79–85.

    Google Scholar 

  • Vanyan, L.L. and Palshin, N.A, On the seafloor frequency sounding interpretation, Izv. Akad Nauk, Fiz. Zemli, 1993, no. 12, pp. 65–66.

    Google Scholar 

  • Vanyan, L.L., Palshin, N.A., and Repin, I.A, Deep Magnetotelluric Sounding Using the Australia-New Zealand Submarine Cable: 2. Interpretation, Izv. Akad. Nauk, Fiz. Zemli, 1995, no. 5, pp. 53–57.

    Google Scholar 

  • Vanyan, L.L., Palshin, N.A., Utada, H., Shimizu, H., and Nikiforov, V.M, Study of the telluric field using the submarine cable across the Sea of Japan, Izv., Phys. Solid Earth, 2000, vol. 36, no. 7, pp. 549–552.

    Google Scholar 

  • Wang, D., Mookherjee, Y.Xu., and Karato, S, The effect of water on the electrical conductivity of olivine, Nature, 2006, vol. 443, pp. 977–980.

    Article  Google Scholar 

  • Webb, S.C., Constable, S.C., Cox, C.S., and Deaton, T.K., A seafloor electric field instrument, J. Geomagn. Geoelectr., 1985, vol. 37, pp. 1115–1129.

    Article  Google Scholar 

  • White, R.S, New seismic images of oceanic crustal structure, Geology, 1990, vol. 18, no. 5, pp. 462–465.

    Article  Google Scholar 

  • Xu, Y., Poe, B.T., Shankland, T.J., and Rubie, D, Electrical conductivity of olivine, wadsleyite and ringwoodite under upper-mantle condition, Science, 1998, vol. 280, pp. 1415–1418.

    Google Scholar 

  • Yoshino, T., Matsuzaki, T., Yamashita, S., and Katsura, T, Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere, Nature, 2006, vol. 443, pp. 973–976.

    Article  Google Scholar 

  • Yoshino, T, Laboratory electrical conductivity measurement of mantle minerals, Surv. Geophys., 2010, vol. 31, pp. 163–206.

    Article  Google Scholar 

  • Young, P.D. and Cox, C.S, Electromagnetic active source sounding near the East Pacific Rise, Geophys. Res. Letter, 1981, vol. 8, pp. 1043–1046.

    Article  Google Scholar 

  • Zonenshain, L.P. and Savostin, L.A, Geodynamics of the Baikal rift zone and plate tectonics of Asia, Tectonophysics, 1981, vol. 76, pp. 1–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Palshin.

Additional information

Original Russian Text © N.A. Palshin, D.A. Alekseev, 2017, published in Fizika Zemli, 2017, No. 3, pp. 107–123.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palshin, N.A., Alekseev, D.A. Deep electrical conductivity features in the transition zone from the Pacific to Eurasia. Izv., Phys. Solid Earth 53, 429–445 (2017). https://doi.org/10.1134/S1069351317020100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351317020100

Navigation