Skip to main content
Log in

Cell-cycle control of a large-conductance K+ channel in mouse early embryos

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THERE have been few investigations into the role of ion channels in mammalian early embryonic development1–4, despite studies showing that changes in ion channel activity accompany the early embryonic development of non-mammalian species5–7 and the proliferation of mammalian cells8–12. Here we report that a large-conductance, voltage-activated K+ channel is active in unfertilized mouse oocytes but is rarely observed in later embryos. The channel activity is linked to the cell cycle, being active throughout M and Gl phases, and switching off during the Gl-to-S transition. These changes in channel activity are accompanied by corresponding shifts in membrane potential. Inactivation of the channel during S/G2 can be prevented by exposing the oocytes to dibutyryl cyclic AMP or forskolin, an activator of adenylyl cyclase. Inhibition of protein synthesis with puromycin did not prevent inactivation of the channel at the end of Gl or its subsequent reactivation at the end of G2, indicating that the channel activity is not regulated by mitosis-promoting factor or cyclins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kline, D. in Developmental Biology of Membrane Transport Systems: Current Topics in Membranes Vol. 39 (ed. Benos, D. J.) 89–120 (Academic, San Diego, 1991).

    Book  Google Scholar 

  2. Lee, S. J. in vitro Fert. Embryo Transfer 4, 331–333 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Mitani, S. J. Physiol., Lond. 363, 71–86 (1985).

    Article  CAS  Google Scholar 

  4. Robinson, D. H. & Benos, D. J. in Developmental Biology of Membrane Transport Systems: Current Topics in Membranes Vol. 39 (ed. Benos, D. J.) 121–150 (Academic, San Diego, 1991).

    Book  Google Scholar 

  5. Medina, I. R. & Bregestovski, P. D. Proc. R. Soc. B235, 95–102 (1988).

    ADS  CAS  Google Scholar 

  6. Medina, I. R. & Bregestovski, P. D. Proc. R. Soc. B245, 159–164 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Moody, W. J., Simoncini, L., Coombs, J. L., Spruce, A. E. & Villaz, M. J. Neurobiol. 22, 674–684 (1991).

    Article  CAS  Google Scholar 

  8. Bubien, J. K., Kirk, K. L., Rado, T. A. & Frizzell, R. A. Science 248, 1416–1419 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Chiu, S. Y. & Wilson, G. F. J. Physiol., Lond. 408, 199–222 (1989).

    Article  CAS  Google Scholar 

  10. DeCoursey, T. E., Chandy, K. G., Gupta, S. & Cahalan, M. D. Nature 307, 465–468 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Matteson, D. R. & Deutsch, C. Nature 307, 468–471 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Wegman, E. A., Young, J. A. & Cook, D. I. Pflügers Arch. 417, 562–570 (1991).

    Article  CAS  Google Scholar 

  13. Howlett, S. K. & Bolton, V. N. J. Embryol. exp. Morph. 87, 175–206 (1985).

    CAS  PubMed  Google Scholar 

  14. Bolton, V. N., Oades, P. J., & Johnson, M. H. J. Embryol. exp. Morphol. 79, 139–163 (1984).

    CAS  PubMed  Google Scholar 

  15. Smith, R. K. W. & Johnson, M. H. J. Reprod. Fertil. 76, 393–399 (1986).

    Article  CAS  Google Scholar 

  16. Grandin, N. & Charbonneau, M. J. Cell Biol. 112, 711–718 (1991).

    Article  CAS  Google Scholar 

  17. Poenie, M., Alderton, J., Steinhardt, R., & Tsien, R. Science 233, 886–889 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Whitaker, M. & Patel, R. Development 108, 525–542 (1990)

    CAS  PubMed  Google Scholar 

  19. Blatz, A. L. & Magleby, K. L. Trends Neurosci. 10, 463–467 (1987).

    Article  CAS  Google Scholar 

  20. Yoshida, S., Plant, S., McNiven, A. I. & House, C. R. Pflügers Arch. 415, 516–518 (1990).

    Article  CAS  Google Scholar 

  21. Bountra, C. & Martin, R. J. Q. J. exp. Physiol. 72, 483–492 (1987).

    Article  CAS  Google Scholar 

  22. Amigorena, S., Choquet, D., Teillaud, J. L., Korn, H. & Fridman, W. H. J. Immun. 144, 2038–2045 (1990).

    CAS  PubMed  Google Scholar 

  23. Sabath, D. E., Monos, D. S., Lee, S. C., Deutsch, C. & Prystowsky, M. B. Proc. natn. Acad. Sci. U.S.A. 83, 4739–4743 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Deutsch, C. in Potassium Channels: Basic Function and Therapeutic Aspects (ed. Colatsky, T. J.) 251–271 (Wiley-Liss, New York, 1990).

    Google Scholar 

  25. Waksmundzka, M., Krysiak, E., Karasiewicz, J., Czolowska, R. & Tarkowski, A. K. J. Embryol. exp. Morphol. 79, 77–96 (1984).

    CAS  PubMed  Google Scholar 

  26. Block, M. L. & Moody, W. J. Science 247, 1090–1092 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Howlett, S. K. Cell 45, 387–396 (1986).

    Article  CAS  Google Scholar 

  28. Nasr-Esfahani, M., Johnson, M. H. & Aitken, R. J. Hum. Reprod. 5, 997–1003 (1990).

    Article  CAS  Google Scholar 

  29. Chatot, C. L., Ziomek, C. A., Bavister, B. D., Lewis, J. L. & Torres, I. J. Reprod. Fertil. 86, 679–688 (1989).

    Article  CAS  Google Scholar 

  30. Peres, A. J. Physiol., Lond. 391, 573–588 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, M., Pickering, S., Johnson, M. et al. Cell-cycle control of a large-conductance K+ channel in mouse early embryos. Nature 365, 560–562 (1993). https://doi.org/10.1038/365560a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365560a0

  • Springer Nature Limited

This article is cited by

Navigation