Skip to main content
Log in

HCN2 Channels: A Permanent Open State and Conductance Changes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the membranes of heart and brain cells can conduct Na+ and K+ ions and activate between −30 and −120 mV. We express the α subunit of HCN2 channels in Xenopus laevis oocytes and are confronted with two unexpected problems. First, we observe a rise in membrane conductance at resting potential proportional to the amount of expression. On activation to hyperpolarizing potentials, the instantaneous conductance rises in proportion to the amount of activated current. CsCl reduces the observed effects. This can be explained by the expression in oocytes membranes of a fraction of permanently open HCN2 channels. Second, using TEVC technique, our data show a completely different behaviour in physiological solutions of heterogeneously expressed HCN2 currents from what is observed in wild-type currents in the absence of drugs. During pulse trains, we frequently observe (1) a fast and significant decline of the amplitude of HCN2 current during hyperpolarizing steps, (2) no recovery of this decline after a long period at resting membrane potential, (3) a different behaviour of the tail currents at depolarization with other and slower changes than during activation, (4) recovery of this decline in high K+/low Na+ bath solution. The decline of the HCN2 current in physiological conditions is caused by a reduction of the conductance of the HCN2 channel presumably caused by the mere presence of sodium in the channel, in competition with potassium ions and with a limitative effect on the channel conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almers W (1972a) Potassium conductance changes in skeletal muscle and the potassium concentration in the transverse tubules. J Physiol 225:33–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Almers W (1972b) The decline of potassium permeability during extreme hyperpolarization in frog skeletal muscle. J Physiol 225:57–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Au KW, Siu CW, Lau CP, Tse HF, Li R (2008) Structural and functional determinants in the S5-P region of HCN-encoded pacemaker channels revealed by cysteine-scanning substitutions. Am J Physiol Cell Physiol 294:C136–C144

  • Azene E, Xue T, Li R (2003) Molecular basis of the effect of potassium on heterologously expressed pacemaker (HCN) channels. J Physiol 547:349–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Azene E, Sang D, Tsang SY, Li R (2005a) Pore-to-gate coupling of HCN channels revealed by a pore variant that contributes to gating but not permeation. BBRC 327:1131–1142

    CAS  PubMed  Google Scholar 

  • Azene E, Xue T, Marbán E, Tomaselli G, Li R (2005b) Non-equilibrium behaviour of HCN channels: insights into the role of HCN channels in native and engineered pacemakers. Cardiovasc Res 67:263–273

    Article  CAS  PubMed  Google Scholar 

  • Barish M (1983) A transient calcium-dependent chloride current in the immature Xenopus oocytes. J Physiol 342:309–325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baumgarten C, Isenberg G (1977) Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibres during voltage clamp hyperpolarization and depolarization. Eur J Physiol 368:19–31

    Article  CAS  Google Scholar 

  • Baumgarten C, Isenberg G, McDonald T, Ten Eick R (1977) Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. Experiments in sodium-free bathing media. J Gen Physiol 70:149–169

    Article  CAS  PubMed  Google Scholar 

  • Belles B, Malecot C, Hescheler J, Trautwein W (1988) ‘Run-down’ of the Ca current during whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular Ca2+. Pflug Arch 411:353–360

    Article  CAS  Google Scholar 

  • Bois P, Bescond J, Renaudon B, Lenfant J (1996) Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 118:1051–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • BoSmith R, Briggs I, Sturgess N (1993) Inhibitory actions of Zeneca ZD7288 on whole-cell hyperpolarization activated inward current (If) in guinea-pig dissociated sinoatrial node cells. Br J Pharmacol 110:343–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown DD (2004) A tribute to the Xenopus laevis oocyte and egg. J Biol Chem 279:45291–45299

    Article  CAS  PubMed  Google Scholar 

  • Bucchi A, Baruscotti M, DiFrancesco D (2002) Current-dependent block of rabbit sino-atrial node If channels by ivabradine. J Gen Physiol 120:1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Byerly L, Yazejian B (1986) Intracellular factors for the maintenance of calcium currents in perfused neurones from the snail, Lymnea stagnalis. J Physiol (Lond.) 370:631–650

    Article  CAS  Google Scholar 

  • Callewaert G, Carmeliet E, Vereecke J (1984) Single cardiac Purkinje cells: general electrophysiology and voltage-clamp analysis of the pace-maker current. J Physiol 349:643–661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Mitcheson J, Lin M, Sanguinetti M (2000) Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel. J Biol Chem 275:36465–36471

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Mitcheson J, Tristani-Firouzi M, Lin M, Sanguinetti M (2001a) The S4–S5 linker couples voltage sensing and activation of pacemaker channels. Proc Natl Acad Sci USA 98:11277–11282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen S, Wang J, Siegelbaum S (2001b) Properties of hyperpolarization-activated current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol 117:491–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng L, Kinard K, Rajamani R, Sanguinetti M (2007) Molecular mapping of the binding site for a blocker of hyperpolarization-activated, cyclic nucleotide-modulated pacemaker channels. JPET 322:931–939

    Article  CAS  Google Scholar 

  • Colville C, Gould G (1994). Expression of membrane transport proteins in Xenopus oocytes. In: Membrane protein expression systems: A User’s Guide, ed. Gould G, pp. 243–274. Portland Press, London

  • Costa PF, Emilio MG, Fernandes PL, Ferreira HG, Ferreira KG (1989) Determination of ionic permeability coefficients of the plasma membrane of Xenopus laevis oocytes under voltage clamp. J Physiol 413:199–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dascal N (1987) The use of Xenopus oocytes for the study of ion channels. Crit Rev Biochem Mol Biol 22:317–387

    Article  CAS  Google Scholar 

  • Decher N, Bundis F, Vajna R, Steinmeyer K (2003) KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents. Eur J Physiol 446:633–640

    Article  CAS  Google Scholar 

  • Decher N, Chen J, Sanguinetti M (2004) Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels. J Biol Chem 279:13859–13865

    Article  CAS  PubMed  Google Scholar 

  • Deitmer J, Ellis D (1980) Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J Physiol 304:471–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dick E, Dick D (1970) The effect of surface microvilli on the water permeability of single toad oocytes. J Cell Sci 6:454–476

    Google Scholar 

  • Dick D, McLaughlin S (1969) The activities and concentrations of sodium and potassium in toad oocytes. J Physiol 205:61–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DiFrancesco D (1982) Block and activation of the pace-maker channel in calf Purkinje fibres: effects of potassium, caesium and rubidium. J Physiol 329:485–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DiFrancesco D (1985) The cardiac hyperpolarizing-activated current, if. Origins and developments. Prog Biophys Mol Biol 46:163–183

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D (1986) Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324:470–473

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D (1994) Some properties of the UL-FS 49 block of the hyperpolarization-activated current (i f) in sino-atrial node myocytes. Eur J Physiol 427:64–70

    Article  CAS  Google Scholar 

  • DiFrancesco D, Ferroni A, Mazzanti M, Tromba C (1986) Properties of the hyperpolarizing-activated current (i f) in cells isolated from the rabbit sino-atrial node. J Physiol 377:61–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eidne K (1994). Expression of receptors in Xenopus oocytes. In: Membrane protein expression systems: A User’s Guide, ed. Gould G, pp 275–299. Portland Press, London

  • Frace A, Maruoka F, Noma A (1992) Control of the hyperpolarization-activated cation current by external anions in rabbit sino-atrial node cells. J Physiol 453:307–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gauss R, Seifert R, Kaupp B (1998) Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393:583–587

    Article  CAS  PubMed  Google Scholar 

  • Goethals M, Raes A, Van Bogaert PP (1993) Use-dependent block of the pacemaker current If in rabbit sinoatrial node cells by Zatebradine. Circulation 88:2389–2401

    Article  CAS  PubMed  Google Scholar 

  • Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  CAS  PubMed  Google Scholar 

  • Henrikson C, Xue T, Dong P, Sang D, Marban E, Li R (2003) Identification of a surface charged residue in the S3-S4 linker of the pacemaker (HCN) channel that influences activation gating. J Biol Chem 278:13647–13654

    Article  CAS  PubMed  Google Scholar 

  • Hescheler J, Pelzer D, Trube G, Trautwein W (1982) Does the organic channel blocker D600 act from inside or outside on the cardiac cell membrane? Pflüg Arch 393:287–291

    Article  CAS  Google Scholar 

  • Hestrin S (1987) The properties and function of inward rectification in rod photoreceptors of tiger salamander. J Physiol 390:319–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Isenberg G, Klockner U (1982) Isolated bovine ventricular myocytes. Characterization of the action potential. Pflug Arch 395:19–29

    Article  CAS  Google Scholar 

  • Ishii T, Takano M, Xie LH, Noma A, Ohmori H (1999) Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node. J Biol Chem 274:12835–12839

    Article  CAS  PubMed  Google Scholar 

  • Jentsch T, Stein V, Weinreich F, Zdebik A (2002) Molecular structure and physiological function of chloride channels. Phys Rev 82:503–568

    Article  CAS  Google Scholar 

  • Kuruma A, Hirayama Y, Hartzell C (2000) A hyperpolarization- and acid-activated nonselective cation current in Xenopus oocytes. AJP 279:C1401–C1413

    CAS  Google Scholar 

  • Lesso H, Li R (2003) Helical secondary structure of the external S3-S4 linker of pacemaker (HCN) channels revealed by site-dependent perturbations of activation phenotype. J Biol Chem 278:22290–22297

    Article  CAS  PubMed  Google Scholar 

  • Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591

    Article  CAS  PubMed  Google Scholar 

  • Macri V, Accili E (2004) Structural elements of instantaneous and slow gating in hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem 279:16832–16846

    Article  CAS  PubMed  Google Scholar 

  • Macri V, Proenza C, Agranovich E, Angoli D, Accili E (2002) Separable gating mechanisms in a mammalian pacemaker channel. J Biol Chem 277:35939–35946

    Article  CAS  PubMed  Google Scholar 

  • Maruoka F, Nakashima Y, Takano M, Ono K, Noma A (1994) Cation-dependent gating of the hyperpolarization-activated cation current in the rabbit sino-atrial node cells. J Physiol 477:423–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miledi R (1982) A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc R Soc Lond B 215:491–497

    Article  CAS  PubMed  Google Scholar 

  • Miledi R, Parker I (1984) Chloride current induced by injection of calcium into Xenopus oocytes. J Physiol 357:173–183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moroni A, Barbuti A, Altomare C, Viscomi C, Morgan J, Baruscotti M, DiFrancesco D (2000) Kinetic and ionic properties of human HCN2 pacemaker channel. Eur J Physiol 439:618–626

    Article  CAS  Google Scholar 

  • Pian P, Bucchi A, Robinson R, Siegelbaum S (2006) Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2. J Gen Physiol 128:593–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pian P, Bucchi A, DeCostanzo A, Robinson R, Siegelbaum S (2007) Modulation of cyclic nucleotide-regulated HCN channels by PIP2 and receptors coupled to phospholipase C. Eur J Physiol 455:125–145

    Article  CAS  Google Scholar 

  • Proenza C, Yellen G (2006) Distinct populations of HCN pacemaker channels produce voltage-dependent and voltage-independent currents. J Gen Physiol 127:183–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Proenza C, Angoli D, Agranovich E, Macri V, Accili EA (2002a) Pacemaker channels produce an instantaneous current. J Biol Chem 277:5101–5109

    Article  CAS  PubMed  Google Scholar 

  • Proenza C, Tran N, Angoli D, Zahynacz K, Balcar P, Accili E (2002b) Different roles for the cyclic nucleotide binding domain and amino terminus in assembly and expression of hyperpolarization-activated, cyclic nucleotide-gated channels. J Biol Chem 277:29634–29642

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Kryukova Y, Potapova I, Doronin S, Larsen M, Krishnamurthy G, Cohen I, Robinson R (2004) MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes. J Biol Chem 279:43497–43502

    Article  CAS  PubMed  Google Scholar 

  • Raes A, Van De Vijver G, Goethals M, Van Bogaert PP (1998) Use-dependent block of I h in mouse dorsal root ganglion neurons by sinus node inhibitors. Br J Pharmacol 125:741–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santoro B, Liu D, Yao H, Barsch D, Kandel E, Siegelbaum S, Tibbs G (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93:717–729

    Article  CAS  PubMed  Google Scholar 

  • Schmieder S, Lindenthal S, Banderali U, Ehrenfeld J (1998) Characterization of the putative chloride channel xClC-5 expressed in Xenopus laevis oocytes and comparison with endogenous chloride currents. J Physiol 511(2):379–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sha Q, Lansbery K, Distefano D, Mercer R, Nichols C (2001) Heterologous expression of the Na+, K+-ATPase γsubunit in Xenopus oocytes induces an endogenous, voltage-gated large diameter pore. J Physiol 535(2):407–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smart TG, Krishek BJ (1995). Xenopus oocyte microinjection and ion-channel expression. In: Patch-clamp applications and protocols, ed. Boulton A, Baker G & Waltz W, pp. 259–305. Humana Press, New York

  • Stamps P, Begenisich T (1998) Unidirectional fluxes through ion channels expressed in Xenopus oocytes. Methods Enzymol 293:556–564

    Article  Google Scholar 

  • Stieber J, Wieland K, Stöckl G, Ludwig A, Hofman F (2006) Bradycardic and proarrhythmic properties of sinus node inhibitors. Mol Pharmacol 69:1328–1337

    Article  CAS  PubMed  Google Scholar 

  • Thollon C, Bedut S, Villeneuve N, Cogé F, Piffard L, Guillaumin JP, Brunel-Jacquemin C, Chomarat P, Boutin JA, Peglion JL, Vilaine JP (2007) Use-dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity. Br J Pharmacol 150:37–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tzounopoulos T, Maylie J, Adelman JP (1995) Induction of endogenous channels by high levels of heterologous membrane proteins in Xenopus Oocytes. Biophys J 69:904–908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulens C, Tytgat J (2001a) Functional heteromerization of HCN1 and HCN2 pacemaker channels. J Biol Chem 276:6069–6072

    Article  CAS  PubMed  Google Scholar 

  • Ulens C, Tytgat J (2001b) G i- and G S-coupled receptors up regulate the cAMP cascade to modulate HCN2, but not HCN1 pacemaker channels. Eur J Physiol 442:928–942

    Article  CAS  Google Scholar 

  • Van Bogaert PP, Goethals M (1987) Pharmacological influence of specific bradycardic agents on the pacemaker current of sheep cardiac Purkinje fibres. A comparison between three different molecules. Eur Heart J 8:L35–L42

    Article  Google Scholar 

  • Van Bogaert PP, Goethals M, Simoens C (1990) Use- and frequency-dependent blockade by UL-FS 49 of the i f pacemaker current in sheep cardiac Purkinje fibres. Eur J Pharmacol 187:241–256

    Article  PubMed  Google Scholar 

  • Van Bogaert PP, Pittoors F (2003) Use-dependent blockade of cardiac pacemaker current (If) by cilobradine and zatebradine. Eur J Pharmacol 478:161–171

  • Weber W (1999) Ion currents of Xenopus laevis oocytes: state of the art. Biochim Biophys Acta 1421:213–233

    Article  CAS  PubMed  Google Scholar 

  • Won-Kyung H, Brown H, Noble D (1994) High selectivity of the if channel to Na+ and K+ in rabbit isolated sinoatrial node cells. Eur J Physiol 426:68–74

    Article  Google Scholar 

  • Xue T, Li R (2002) An external determinant in the S5-P linker of the pacemaker (HCN) channel identified by sulfhydril modification. J Biol Chem 277:46233–46242

    Article  CAS  PubMed  Google Scholar 

  • Xue T, Marbán E, Li R (2002) Dominant-negative suppression of HCN1- and HCN2-encoded pacemaker currents by an engineered HCN1 construct. Circ Res 90:1267–1273

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Wu J, Potapova I, Wymore R, Holmes B, Zuckerman J, Pan Z, Wang H, Shi W, Robinson R, El-Maghrabi M, Benjamin W, Dixon J, McKinnon D, Cohen I, Wymore R (2001) MinK-Related Peptide 1. A β subunit for the HCN ion channel subunit family enhances expression and speeds activation. Circ Res 88:e84–e87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Steven A. Siegelbaum Ph.D. (Department of Pharmacology, Columbia University, New York) for his generous gift of mBCNG-2 cDNA encoding for the HCN2 channel and to Prof. Jan Tytgat (Laboratory of Toxicology, University of Leuven) for the preparation of the cRNA and the useful teaching of the techniques of surgical removal of ovarian tissue, preparation and injection of the oocytes. Dr. Alain Labro (Molecular biophysics, physiology and pharmacology, University of Antwerp) was so kind to provide us with cRNA from his constructed cDNA of HCN2 channel. We thank him for the many helpful discussions. We gratefully acknowledge the generous support of the Instituut Born-Bunge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Paul Van Bogaert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pittoors, F., Van Bogaert, P.P. HCN2 Channels: A Permanent Open State and Conductance Changes. J Membrane Biol 248, 67–81 (2015). https://doi.org/10.1007/s00232-014-9742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9742-0

Keywords

Navigation