Skip to main content

Advertisement

Log in

Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

FAST synaptic transmission in the central nervous system can be modulated by neurotransmitters and second-messenger pathways. For example, transmission at glutamatergic synapses can be depressed by the metabotropic glutamate receptor1,2, providing autoreceptor-mediated negative feedback. Metabotropic glutamate receptor inhibition of Ca2+ channels may contribute to this pathway3–6. In contrast, stimulation of protein kinase C can enhance excitatory synaptic transmission7, whereas both depression and enhancement of Ca2+ current have been reported8. Here we show that in hippocampal CA3 and cortical pyramidal neurons, activation of protein kinase C enhances current through N-type Ca2+ channels and, in addition, dramatically reduces G protein-dependent inhibition of these same channels by the meta-botropic glutamate receptor. In parallel experiments on fast excitatory transmission at corticostriatal synapses, kinase C activators were similarly found to reduce the inhibitory effect produced by stimulation of the metabotropic glutamate receptor. The results show that second-to-second control of Ca2+ channels by the metabotropic glutamate receptor can itself be modulated on a slower timescale by protein kinase C. These mechanisms may be used in the control of fast excitatory synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lovinger, D. M. Neurosci. Lett 129, 17–21 (1991).

    Article  CAS  Google Scholar 

  2. Baskys, A. & Malenka, R. C. J. Physiol., Lond. 444, 687–701 (1991).

    Article  CAS  Google Scholar 

  3. Lester, R. A. & Jahr, C. E. Neuron 4, 741–749 (1990).

    Article  CAS  Google Scholar 

  4. Swartz, K. J. & Bean, B. P. J. Neurosci. 12, 4358–4371 (1992).

    Article  CAS  Google Scholar 

  5. Sayer, R. J., Schwindt, P. C. & Crill, W. E. J. Neurophysiol. 68, 833–842 (1992).

    Article  CAS  Google Scholar 

  6. Sahara, Y. & Westbrook, G. L. Soc. Neurosci. 17, 1168 (1991).

    Google Scholar 

  7. Malenka, R. C., Madison, D. V. & Nicoll, R. A. Nature 321, 175–177 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Anwyl, R. Brain Res. Rev. 16, 265–281 (1991).

    Article  CAS  Google Scholar 

  9. Palmer, E. et al. Eur. J. Pharmac. 166, 585–587 (1988).

    Article  Google Scholar 

  10. Irving, A. J. et. al. Eur. J. Pharmac. 186, 363–365 (1990).

    Article  CAS  Google Scholar 

  11. House, C. & Kemp, B. E. Science 238, 1726–1728 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Olivera, B. M. et al. Science 230, 1338–1343 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Plummer, M. R., Logothetis, D. E. & Hess, P. Neuron 2, 1453–1463 (1989).

    Article  CAS  Google Scholar 

  14. Aosaki, T. & Kasai, H. Pflügers Arch. 414, 150–156 (1989).

    Article  CAS  Google Scholar 

  15. Regan, L. J., San, D. W. Y. & Bean, B. P. Neuron 6, 269–280 (1991).

    Article  CAS  Google Scholar 

  16. Lipscombe, D., Bley, K. & Tsien, R. W. Soc. Neurosci. 14, 153 (1988).

    Google Scholar 

  17. Madison, D. V. Soc. Neurosci. 15, 16 (1989).

    Google Scholar 

  18. O'Dell, T. J. & Alger, B. E. J. Physiol., Lond. 436, 739–767 (1991).

    Article  CAS  Google Scholar 

  19. Hirning, L. D. et al. Science 239, 57–61 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Kamiya, H., Sawada, S. & Yamamoto, C. Neurosci. Lett. 91, 84–88 (1988).

    Article  CAS  Google Scholar 

  21. Horne, A. L. & Kemp, J. A. Br. J. Pharmac. 103, 1733–1739.

  22. Cordingley, G. E. & Weight, F. F. Br. J. Pharmac. 88, 847–856 (1986).

    Article  CAS  Google Scholar 

  23. North, R. A. Br. J. Pharmac. 98, 13–28 (1989).

    Article  CAS  Google Scholar 

  24. Scholz, K. P. & Miller, R. J. Neuron 8, 1139–1150 (1992).

    Article  CAS  Google Scholar 

  25. Dutar, P. & Nicoll, R. A. Neuron 1, 585–591 (1988).

    Article  CAS  Google Scholar 

  26. Thompson, S. M., Haas, H. L. & Gahwiler, B. H. J. Physiol., Lond. 451, 347–363 (1992).

    Article  CAS  Google Scholar 

  27. Leeb-Lundberg, L. M. F. et al. Proc. natn. Acad. Sci. U.S.A. 82, 5651–5655 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Pollock, W. K. & MacIntyre, D. E. Biochem. J. 234, 67–73 (1986).

    Article  CAS  Google Scholar 

  29. Schoepp, D. D. & Johnson, B. G. Biochem. Pharmac. 37, 4299–4305 (1988).

    Article  CAS  Google Scholar 

  30. Aramori, I. & Nakanishi, S. Neuron 8, 757–765 (1992).

    Article  CAS  Google Scholar 

  31. Katada, T. et al. Eur. J. Biochem. 151, 431–437 (1985).

    Article  CAS  Google Scholar 

  32. Bollag, G. E. et al. Proc. natn. Acad. Sci. U.S.A. 83, 5822–5824 (1986).

    Article  ADS  CAS  Google Scholar 

  33. Bosma, M. M. & Hille, B. Proc. natn. Acad. Sci. U.S.A. 86, 2943–2947 (1989).

    Article  ADS  CAS  Google Scholar 

  34. Rane, S. G. et al. Neuron 3, 239–245 (1989).

    Article  CAS  Google Scholar 

  35. Hamill, O. P. et al. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swartz, K., Merritt, A., Bean, B. et al. Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission. Nature 361, 165–168 (1993). https://doi.org/10.1038/361165a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361165a0

  • Springer Nature Limited

This article is cited by

Navigation