Skip to main content
Log in

Large anisotropic thermal conductivity in synthetic diamond films

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

AS high-power electronic devices are packed to progressively higher densities, synthetic diamond films are being considered as heat spreaders for the prevention of thermal damage (see ref. 1 for example). Although diamond single crystals are known to have the highest thermal conductivity for any material at room tem-perature (22 W cm−1 K−1 for diamond with natural isotopic abundance, compared with 4 W cm-1 K-1 for copper), the dependence of conductivity on the microstructure of polycrystalline diamond films is not understood. Using a newly developed laser technique2, we have measured thermal conductivity in the experimentally difficult direction perpendicular to the plane of the diamond film. Taken together with earlier in-plane measurements3, this gives a complete description of the local thermal conductivity, showing a significant gradient and anisotropy correlated with the inhomogeneous grain structure. Despite phonon scattering at lattice defects and grain boundaries, we find that the local conductivity near the top growth surface of a synthetic diamond film is, surprisingly, at least as high as that of gem-quality diamond single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angus, J. C., Wang, Y. & Sunkara, M. A. Rev. Mater. Sci. 21, 221–226 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Graebner, J. E. et al. J. appl. Phys. 71, 5353–5356 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Graebner, J. E., Jin, S., Kammlott, G. W., Herb, J. A. & Gardinier, C. F. Appl. Phys. Lett. 60, 1576–1578 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Victor, A. C. J. chem. Phys. 36, 1903–1911 (1962).

    Article  ADS  CAS  Google Scholar 

  5. Hoinkis, M. et al. Appl. Phys. Lett. 59, 1870–1871 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Parker, W. J., Jenkins, R. J., Butler, C. P. & Abbott, G. L. J. appl. Phys. 32, 1679–1684 (1961).

    Article  ADS  CAS  Google Scholar 

  7. Vandersande, J. W., Vining, C. B. & Zoltan, A. Electrochem. Soc. Proc. 91–8, 2nd Int. Symp. Diamond Materials, 443–444 (1991).

    Google Scholar 

  8. Anthony, T. R. et al. Phys. Rev. 42, 1104–1111 (1990).

    Article  CAS  Google Scholar 

  9. Berman, R. in The Properties of Diamond (ed. Field, J. E.) Ch. 1 (Academic, London, 1979).

    Google Scholar 

  10. Burgemeister, E. A. Physica B93, 165–179 (1978).

    CAS  Google Scholar 

  11. Slack, G. A. J. phys. Chem. Solids 34, 321–335 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Graebner, J. E., Mucha, J. A., Seibles, L. & Kammlott, G. W. J. appl. Phys. 71, 3143–3146 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Berman, R. Thermal Conduction in Solids (Oxford Univ. Press, Oxford, 1976).

    Google Scholar 

  14. Graebner, J. E. & Herb, J. A. Diamond Films Technol. 1, 155–164 (1992).

    CAS  Google Scholar 

  15. Morelli, D. T., Hartnett, T. M. & Robinson, C. J. Appl. Phys. Lett. 59, 2112–2114 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Hetherington, A. V., Wort, C. J. H. & Southworth, P. J. Mater. Res. 5, 1591–1594 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graebner, J., Jin, S., Kammlott, G. et al. Large anisotropic thermal conductivity in synthetic diamond films. Nature 359, 401–403 (1992). https://doi.org/10.1038/359401a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359401a0

  • Springer Nature Limited

This article is cited by

Navigation