Skip to main content
Log in

Linear free energy relations for predicting dissolution rates of solids

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A QUANTITATIVE understanding of the rates and mechanisms of dissolution of crystalline solids in aqueous solutions is critical to the chemical modelling of many geochemical, environmental and industrial processes. Here I show that a linear free energy equation, developed recently1,2 for the prediction of the standard Gibbs free energies of formation of isostructural families of crystalline solids, can also be used for predicting the dissolution rates of solids. This equation bears a close analogy with the Hammett equation for aqueous organics3. Regression of data for the surface-reaction-controlled dissolution rates of isostructural families of divalent metal oxides and orthosilicates using the new equation yields coefficients characteristic of the specific crystal structure, whichturn out to be very close to the coefficients obtained by regression of standard free energy data for the same families. These results suggest that standard free energy coefficients can be used to predict dissolution rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sverjensky, D. A. & Molling, P. A. Nature 355, 231–234 (1992).

    Article  ADS  Google Scholar 

  2. Sverjensky, D. A. Geol. Soc. Am. A. Meeting Abstr. 23, A212 (1991).

    Google Scholar 

  3. Wells, P. R. Linear Free Energy Relationships (Academic, London, 1968).

    Google Scholar 

  4. Exner, O. Correlation Analysis of Chemical Data (Plenum, New York, 1988).

    Google Scholar 

  5. Brezonik, P. L. in Aquatic Chemical Kinetics (ed. Stumm, W.) 113–143 (Wiley, New York, 1990).

    Google Scholar 

  6. Hammett, D. J. Am. chem. Soc. 59, 96–103 (1937).

    Article  CAS  Google Scholar 

  7. Casey, W. H. & Westrich, H. R. Nature 355, 157–159 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Casey, W. H. J. Colloid. Interf. Sci. 146, 586–589 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Murphy, W. M. & Helgeson, H. C. Geochim. cosmochim. Acta. 51, 3137–3153 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Murphy, W. M. & Helgeson, H. C. Am. J. Sci. 289, 17–101 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Lasaga, A. C. in Kinetics of Geochemical Processes (eds Lasaga, A. C. & Kirkpatrick, R. J.) 261–319 (Mineralogical Society of America, Washington DC, 1981).

    Google Scholar 

  12. Stumm, W. & Wieland, E. in Aquatic Chemical Kinetics (ed. Stumm, W.) 367–400 (Wiley, New York, 1990).

    Google Scholar 

  13. Wieland, E., Wehrli, B. & Stumm, W. Geochim. cosmochim. Acta 52, 1969–1982 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Blum, A. E. & Lasaga, A. C. Geochim. cosmochim. Acta 55, 2193–2201 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Glushko, V. P. Thermal Constants of Substances (Viniti, Moscow, 1965–1981).

    Google Scholar 

  16. Berman, R. G. J. Petrol. 29, 445–522 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Robinson, G. R. et al. U.S. Dept. Int. Geol. Surv. Open File Rep. 83–72 (1982).

  18. Robie, R. A., Hemingway, B. S. & Takei, H. Am. Mineral. 67, 470–482 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sverjensky, D. Linear free energy relations for predicting dissolution rates of solids. Nature 358, 310–313 (1992). https://doi.org/10.1038/358310a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358310a0

  • Springer Nature Limited

This article is cited by

Navigation