Skip to main content
Log in

Solubility of neutral nickel in silicate melts and implications for the Earth's siderophile element budget

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

EXPERIMENTAL studies have so far suggested that an insignificant amount of neutral nickel (Nio) is soluble in silicate melts1–4. This has led to difficulties in explaining the high concentrations of nickel in the modern Earth's mantle, because virtually all nickel (along with other siderophile elements such as cobalt and the noble metals) would have been removed from the mantle when the Earth's metallic core separated from it at low oxygen fugacity1,2,5. Several models have been proposed to explain the Earth's siderophile element budget1,6–8, each based on the belief that the solubility of neutral metal species in silicate melts is negligible. Here, however, I present experimental evidence indicating that the solubility of at least one neutral siderophile element, nickel, is not negligible. Because the presence of Ni° will affect the partitioning of nickel between silicate melt and metal, and between silicate melt and crystalline silicate phases, these results have implications for our understanding of petrogenetic processes that take place in conditions of low oxygen fugacity, where Nio is an important part of total nickel. In particular, the Nio solubilities found in the present study are large enough to explain the anomalously high concentrations of nickel in the Earth's mantle if the temperature of the early mantle was sufficiently high (≳ 1,800°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, J. H. & Drake, M. J. Nature 322, 211–228 (1986).

    Article  ADS  Google Scholar 

  2. Seifert, S., O'Neill, H. St C. & Grey, G. Geochim. cosmochim. Acta 52, 603–616 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Schmitt, W., Palme, H. & Wanke, H. Geochim. cosmochim. Acta 53, 173–185 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Dudson, P. J. & Fraser, D. G. in Progress in Experimental Petrology (ed. Ford, C. E.) 247–252 (NERC, 1981).

    Google Scholar 

  5. Ringwood, A. E. Origin of the Earth and Moon 1–38 (Springer, New York, 1979).

    Book  Google Scholar 

  6. Newsom, H. E. & Sims, K. W. W. Science 252, 926–933 (1991).

    Article  ADS  CAS  Google Scholar 

  7. O'Neill, H. St C. Geochim. cosmochim. Acta 55, 1159–1172 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Brett, R. Geochim. cosmochim. Acta 48, 1183–1188 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Semkow, K. W. & Haskin, L. A. Geochim. cosmochim. Acta 49, 1897–1908 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Colson, R. O., Haskin, L. A. & Keedy, C. R. Geochim. cosmochim. Acta 55, 2831–2838 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Rammensee, W. thesis, Univ. Mainz (1978).

  12. Elliott, J. F., Gleiser, M. & Ramakrishna, V. Thermochemistry for Steelmaking Vols 1 & 2, 1–846 (Addison-Wesley, London, 1963).

    Google Scholar 

  13. Stevenson, D. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 231–249 (Oxford University Press, New York, 1990).

    Google Scholar 

  14. Jagoutz, E. et al. Proc. 10th Lunar planet. Sci. Conf. 2031–2050 (1979).

  15. Ringwood, A. E. Moon 16, 389–423 (1977).

    Article  ADS  Google Scholar 

  16. Wonks, W. B. & Melosh, H. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 151–174 (Oxford, New York, 1990).

    Google Scholar 

  17. Wanke, H., Dreibus, G. & Jagoutz, E. in Archean Geochemistry (eds Kroner, A., Hanson, G. N. & Goodwin, A. M.) 1–24 (Springer, New York, 1984).

    Book  Google Scholar 

  18. Richardson, F. D. Physical Chemistry of Melts in Metallurgy Vols 1 & 2, 1–537 (Academic, New York, 1974).

    Google Scholar 

  19. Moddeman, W. E., Craven, S. M. & Kramer, D. P. J. Am. Ceram. Soc. 68, C298–C300 (1985).

    Article  Google Scholar 

  20. Hashimoto, A. Geochim. J. 17, 111–145 (1983).

    Article  CAS  Google Scholar 

  21. Morse, S. A., Rhodes, J. M. & Nolan, K. M. Geochim. cosmochim. Acta 55, 2373–2378 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Ehlers, K., Sisson, T. W., Recca, S. I. & Grove, T. L. Geochim. cosmochim. Acta (in the press).

  23. Steele, A. M., Colson, R. O., Korotev, R. L. & Haskin, L. A. Geochim. cosmochim. Acta (in the press).

  24. Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M. & Kelley, K. K. Selected Values of the Thermodynamic Properties of Binry Alloys (Am. Soc. for Metals, Metals Park, Ohio, 1972).

    Google Scholar 

  25. McKay, G., Wagstaff, J. & Yang, S. R. J. geophys. Res. 91, D229–D237 (1986).

    Article  ADS  Google Scholar 

  26. Colson, R. O., Haskin, L. A. & Crane, D. Geochim. cosmochim. Acta 54, 3353–3367 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Campbell, I. H., Naldrett, A. J. & Roeder, P. L. Can. Mineral. 17, 495–505 (1979).

    CAS  Google Scholar 

  28. Colson, R. O. Proc. 22, lunar planet. Sci. Conf. 427–436 (1992).

  29. Chart, T. G. High Temp. High Pressures 5, 241–252 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colson, R. Solubility of neutral nickel in silicate melts and implications for the Earth's siderophile element budget. Nature 357, 65–68 (1992). https://doi.org/10.1038/357065a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357065a0

  • Springer Nature Limited

This article is cited by

Navigation