Skip to main content
Log in

A protein-folding reaction under kinetic control

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SYNTHESIS of α-lytic protease is as a precursor containing a 166 amino-acid pro region1 transiently required for the correct folding of the protease domain2–4. By omitting the pro region in an in vitrorefolding reaction we trapped an inactive, but folding competent state (I) having an expanded radius yet native-like secondary structure. The I state is stable for weeks at physiological pH in the absence of denaturant, but rapidly folds to the active, native state on addition of the pro region as a separate polypeptide chain. The mechanism of action of the pro region is distinct from that of the chaperonins5,6: rather than reducing the rate of off-pathway reactions, the pro region accelerates the rate-limiting step on the folding pathway by more than 107. Because both the I and native states are stable under identical conditions with no detectable interconversion, the folding of α-lytic protease must be under kinetic and not thermodynamic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silen, J. L., McGrath, C. N., Smith, K. R. & Agard, D. A. Gene 69, 237–244 (1988).

    Article  CAS  Google Scholar 

  2. Silen, J. L., Frank, D., Fujishige, A., Bone, R. & Agard, D. A. J. Bact. 171, 1320–1325 (1989).

    Article  CAS  Google Scholar 

  3. Silen, J. L. & Agard, D. A. Nature 341, 462–464 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Baker, D., Silen, J. L. & Agard, D. A. Proteins 12, 339–399 (1992).

    Article  CAS  Google Scholar 

  5. Ellis, R. J. Nature 328, 378–379 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Nature 342, 884–889 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Goto, Y., Calciano, L. J. & Fink, A. L. Proc. natn. Acad. Sci. U.S.A. 87, 573–577 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Goto, Y., Takashi, N. & Fink, A. L. Biochemistry 29, 3480–3488 (1990).

    Article  CAS  Google Scholar 

  9. Dolgikh, D. A. et al. FEBS Lett. 136, 311–315 (1981).

    Article  CAS  Google Scholar 

  10. Kuwajima, K. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  11. Kim, P. & Baldwin, R. L. A. Rev. Biochem. 59, 631–660 (1990).

    CAS  Google Scholar 

  12. Dill, K. A. Biochemistry 29, 133–155 (1989).

    Google Scholar 

  13. Kettner, C. A., Bone, R., Agard, D. A. & Bachovchin, W. B. Biochemistry 27, 7682–7688 (1988).

    Article  CAS  Google Scholar 

  14. Fujinaga, M., Delbaere, L. T. J., Brayer, G. D. & James, M. N. J. molec. Biol. 183, 479–502 (1985).

    Article  Google Scholar 

  15. Kundrot, C. E. & Richards, F. M. Proteins Struct Funct. Genet. 3, 71–84 (1988).

    Article  Google Scholar 

  16. Roche, R. S. & Corbett, R. J. Biochemistry 23, 1888–1894 (1984).

    Article  Google Scholar 

  17. Ie Maire, M., Viel, A. & Moller, J. V. Analyt. Biochem. 177, 50–56 (1989).

    Article  Google Scholar 

  18. Chang, C. T., Wu, C. C. & Yang, J. T. Analyt Biochem. 91, 13–31 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, D., Sohl, J. & Agard, D. A protein-folding reaction under kinetic control. Nature 356, 263–265 (1992). https://doi.org/10.1038/356263a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356263a0

  • Springer Nature Limited

This article is cited by

Navigation