Skip to main content
Log in

Depth is encoded in the visual cortex by a specialized receptive field structure

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

BINOCULAR neurons in the visual cortex are thought to perform the first stage of processing for the fine stereoscopic depth discrimination exhibited by animals with frontally located eyes. Because lateral separation of the eyes gives a slightly different view to each eye, there are small variations in position (disparities), mainly along the horizontal dimension, between corresponding features in the two retinal images. The visual system uses these disparities to gauge depth. We studied neurons in the cat's visual cortex to determine whether the visual system uses the anisotropy in the range of horizontal and vertical disparities. We report here that there is a corresponding anisotropy in the cortical representation of binocular information: receptive-field profiles for left and right eyes are matched for cells that are tuned to horizontal orientations of image contours. For neurons tuned to vertical orientations, left and right receptive fields are predominantly dissimilar. Therefore, a major modification is required of the conventional notion of disparity processing. The modified scheme allows a unified encoding of monocular form and binocular disparity information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, H. B., Blakemore, C. & Pettigrew, J. D. J. Physiol. 193, 327–342 (1967).

    Article  CAS  Google Scholar 

  2. Poggio, G. F. & Fischer, B. J. Neurophysiol. 40, 1392–1405 (1977).

    Article  CAS  Google Scholar 

  3. von der Heydt, R., Adorjani, C. S., Hanny, P. & Baumgartner, G. Expl Brain Res. 31, 523–545 (1978).

    Article  CAS  Google Scholar 

  4. Ferster, D. J. Physiol. 311, 623–655 (1981).

    Article  CAS  Google Scholar 

  5. Maske, R., Yamane, S. & Bishop, P. O. Vision Res. 24, 1921–1929 (1984).

    Article  CAS  Google Scholar 

  6. Hubel, D. H. & Wiesel, T. N. J. Physiol. 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  7. Joshua, D. E. & Bishop, P. O. Expl Brain Res. 10, 389–416 (1970).

    Article  CAS  Google Scholar 

  8. Hubel, D. H. & Wiesel, T. N. J. Physiol. 232, 29–30 (1973).

    Google Scholar 

  9. LeVay, S. & Voigt, T. Visual Neurosci. 1, 395–414 (1988).

    Article  CAS  Google Scholar 

  10. Freeman, R. D. & Ohzawa, I. Vision Res. 30, 1661–1676 (1990).

    Article  CAS  Google Scholar 

  11. Marr, D. & Poggio, T. Proc. R. Soc. B 204, 301–328 (1979).

    ADS  CAS  Google Scholar 

  12. Gabor, D. J. Inst. electr. Eng. 93, 429–457 (1946).

    Google Scholar 

  13. Sakitt, B. & Barlow, H. B. Biol. Cybern. 43, 97–108 (1982).

    Article  CAS  Google Scholar 

  14. Freeman, R. D. & Robson, J. G. Expl Brain Res. 48, 296–300 (1982).

    Article  CAS  Google Scholar 

  15. DeValois, R. L., Albrecht, D. G. & Thorell, L. G. Vision Res. 22, 545–559 (1982).

    Article  CAS  Google Scholar 

  16. Jones, J. P. & Palmer, L. A. J. Neurophysiol. 58, 1187–1211 (1987).

    Article  CAS  Google Scholar 

  17. Marcelja, S. J. opt. Soc. Am. 70, 1297–1300 (1980).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Daugman, J. G. J. opt. Soc. Am. 2, 1160–1169 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Jones, J. P. & Palmer, L. A. J. Neurophysiol. 58, 1233–1258 (1987).

    Article  CAS  Google Scholar 

  20. Poggio, G. F., Gonzalez, F. & Krause, F. J. Neurosci. 8, 4531–4550 (1988).

    Article  CAS  Google Scholar 

  21. Nomura, M., Matsumoto, G. & Fujiwara, S. Biol. Cybern. 63, 237–242 (1990).

    Article  Google Scholar 

  22. Schor, C. M. & Wood, I. Vision Res. 23, 1649–1654 (1983).

    Article  CAS  Google Scholar 

  23. Schor, C. M., Wood, I. C. & Ogawa, J. Vision Res. 24, 573–578 (1984).

    Article  CAS  Google Scholar 

  24. Ohzawa, I., DeAngelis, G. C. & Freeman, R. D. Science 249, 1037–1041 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Ohzawa, I. & Freeman, R. D. J. Neurophysiol. 56, 221–242 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeAngelis, G., Ohzawa, I. & Freeman, R. Depth is encoded in the visual cortex by a specialized receptive field structure. Nature 352, 156–159 (1991). https://doi.org/10.1038/352156a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352156a0

  • Springer Nature Limited

This article is cited by

Navigation