Skip to main content
Log in

A model for the economical encoding of the visual image in cerebral cortex

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We propose a model for the first stage of the cortical transformation of the visual image based on the principle that the cortex encodes the information with the minimum number of channels mathematically needed. We restrict our model to be consistent with the data on size adaptation, the known relationships of acuity and the inverse of magnification factor with eccentricity, and the electrophysiological findings on the physiological uniformity of the striate cortex. Assuming that each hypercolumn analyzes a limited spatial domain, we apply the sampling theorem to show that only 16 channels, composed of 4 sizes, are needed for one dimension. The extension to 2 dimensions leads to a possible scheme for the number, spacing, and orientational disposition of the elements, together with predictions about the number of inputs from the eyes and the total number of hypercolumns. Since all these predictions are consistent with physical and neural estimates, we conclude that the cortex may analyze the image along the lines we suggest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, H.B.: The physical limits of visual discrimination. In: Photophysiology, Vol. 2. New York: Academic Press, Inc. 1964

    Google Scholar 

  • Barlow, H.B.: Optic nerve impulses and Weber's law. Cold Spring Harbor Symposia on Quantitative Biology 30, 539–546 (1965)

    Google Scholar 

  • Barlow, H.B.: Retinal and central factors in human vision limited by noise. In: Photoreception in vertebrates, Barlow, H.B., Fatt, P. (eds.) pp. 337–358. London: Academic Press 1977

    Google Scholar 

  • Barlow, H.B.: The Ferrier lecture: Critical limiting factors in the design of the eye and visual cortex. Proc. R. Soc. Lond. B (1981) (in press)

  • Blakemore, C., Campbell, F.W.: On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. 203, 237–260 (1969)

    Google Scholar 

  • Bracewell, R.M.: Strip integration in radio astronomy. Aust. J. Phys. 9, 198–217 (1956)

    Google Scholar 

  • Bracewell, R.N.: The Fourier transform and its applications. New York: McGraw-Hill Book Co. 1965

    Google Scholar 

  • Campbell, F.W., Robson, J.G.: Applications of Fourier analysis to the visibility of gratings. J. Physiol. 197, 551–566 (1968)

    Google Scholar 

  • Courant, R., Hilbert, D.: Methods of mathematical physics, Vol. 1. New York: Interscience Publishers 1937

    Google Scholar 

  • Cowan, J.D.: Some remarks on channel bandwidths for visual contrast detection. In: Neurosciences research program bulletin, Vol. 5, pp. 492–515. Poppel, Ernst, Held, Richards, Dowling (eds.) 1977

  • Cowey, A., Rolls, E.T.: Human cortical magnification factor and its relation to visual acuity. Exp. Brain Res. 21, 447–454 (1974)

    Google Scholar 

  • Daniel, P.M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. 159, 203–221 (1961)

    Google Scholar 

  • DeValois, R.L., Morgan, H., Snodderly, D.M.: Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of Macaque and human observers. Vision Res. 14, 75–81 (1974)

    Google Scholar 

  • DeValois, R.L., Albrecht, D.G., Thorell, L.G.: Cortical cells: Bar and edge detectors or spatial frequency filters? In: Frontiers in visual science, Cool, S.J., Smith, III, E.L. (eds.) pp. 544–556. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  • DeValois, R.L., DeValois, K.K.: Spatial vision. Ann. Rev. Psychol. 31, 309–341 (1980)

    Google Scholar 

  • Drasdo, N.: The neural representation of visual space. Nature 266, 554–556 (1977)

    Google Scholar 

  • Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187, 517–552 (1966)

    Google Scholar 

  • Gabor, D.: Theory of communication. J. Inst. Electr. Eng. Part 3, 93, 429–457 (1946)

    Google Scholar 

  • Gottfried, Kurt: Quantum mechanics. Reading, Mass. W.A. Benjamin, Inc. 1966

    Google Scholar 

  • Hecht, S., Shlaer, S., Pirenne, N.H.: Energy, quanta, and vision. J. Gen. Physiol. 25, 819–840 (1942)

    Google Scholar 

  • Hubel, David H., Wiesel, Torsten N.: Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158, 267–294 (1974a)

    Google Scholar 

  • Hubel, David H., Wiesel, Torsten N.: Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 158, 295–305 (1974b)

    Google Scholar 

  • Hubel, David H., Wiesel, Torsten N., Stryker, N.P.: Anatomical demonstration of orientation columns in macaque monkey. J. Comp. Neurol. 177, 361–380 (1978)

    Google Scholar 

  • Koenderink, J.J., Bouman, M.A., Bueno de Mesquita, A.E., Slappendel, S.: Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter. J. Opt. Soc. Am. 68, 854–860 (1978a)

    Google Scholar 

  • Koenderink, J.J., Doorn, van A.J.: Visual detection of spatial contrast; influence of location in the visual field, target extent and illuminance level. Biol. Cybern. 30, 157–167 (1978b)

    Google Scholar 

  • Marr, D.: Early processing of visual information. Philos. Trans. R. Soc. (London) 275, 483–524 (1976)

    Google Scholar 

  • Movshon, J.A., Thompson, I.D., Tolhurst, D.J.: Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. 283, 53–77 (1978a)

    Google Scholar 

  • Movshon, J.A., Thompson, I.D., Tolhurst, D.J.: Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J. Physiol. 283, 101–120 (1978b)

    Google Scholar 

  • Pollen, Daniel A., Lee, James R., Taylor, Joseph H.: How does the striate cortex begin the reconstruction of the visual world? Science 173, 74–77 (1971)

    Google Scholar 

  • Polyak, Stephen: The vertebrate visual system. Chicago: The University of Chicago Press 1957

    Google Scholar 

  • Potts, A.M., Hodges, D., Shelman, C.B., Fritz, K.J., Levy, N.S., Mangnall, Y.: Morphology of the primate optic nerve: I. Method and total fiber count. Invest. Ophthal. 11, 980–998 (1972)

    Google Scholar 

  • Richards, Whitman: Experiments in texture perception. Final report, Air Force Office of Scientific Research, Contract No. F44620-74-C-0076 (1978)

  • Robson, J.G.: Receptive fields: Neural representation of the spatial and intensive attributes of the visual image. In: Handbook of perception, Carterette, E.C., Friedman, M.P. (eds.), Vol. V., pp. 81–116 New York: Academic Press 1975

    Google Scholar 

  • Robson, J.G.: Neutral images: The physiological basis of spatial vision. In: Visual coding and adaptability, Harris, L.S., Erlbaum, L., and associates. (eds.). New Jersey: Hillsborough 1980

    Google Scholar 

  • Robson, J.G., Graham, N.: Probability summation and regional variation in contrast sensitivity across the visual field. Vision Res. (1981) (in press)

  • Rovamo, J., Virsu, V., Nasanen, R.: Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271, 54–56 (1978)

    Google Scholar 

  • Sakitt, B.: Counting every quantum. J. Physiol. 223, 131–150 (1972)

    Google Scholar 

  • Sakitt, B.: Why the cortical magnification factor in rhesus cannot be isotropic. Vision Res. (1981) (in press)

  • Sakitt, B., Barlow, H.B.: An economical encoding for size and position information. Psychonomic Society Abstracts (1977)

  • Schwartz, E.L.: Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biol. Cybern. 25, 181–194 (1977)

    Google Scholar 

  • Shlaer, Simon: The relation between visual acuity and illumination. J. Gen. Physiol. 22, 165–188 (1937)

    Google Scholar 

  • Sholl, D.A.: The organization of the cerebral cortex. (Chap. III. The general quantitative history of the cerebral cortex.) London: Methuen: New York: Wiley 1956 (New York: Reprinted by Hafner 1967)

    Google Scholar 

  • Van Buren, J.M.: The retinal ganglion cell layer. Springfield, Illinois: Charles C. Thomas 1963

    Google Scholar 

  • Westheimer, G.: Pupil size and visual resolution. Vision Res. 4, 39–45 (1964)

    Google Scholar 

  • Weymouth, Frank W.: Visual sensory units and the minimal angle of resolution. Am. J. Opthal. Ser. 3 46, Part. II, 102–113 (1958)

    Google Scholar 

  • Wilson, Hugh R., Bergen, James R.: A four mechanism model for threshold spatial vision. Vision Res. 19, 19–32 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NIH grants EY 03412 and EY 02621

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakitt, B., Barlow, H.B. A model for the economical encoding of the visual image in cerebral cortex. Biol. Cybern. 43, 97–108 (1982). https://doi.org/10.1007/BF00336972

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336972

Keywords

Navigation