Skip to main content
Log in

Construction of a pattern-generating circuit with neurons of different networks

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

RHYTHMIC motor behaviours are generated within the central nervous system by neuronal circuits called central pattern generators (CPG)1. Although a CPG can produce several forms of the same behaviour2–5 and several circuits may interact to generate different behaviours6, it is generally assumed that a given CPG consists of a predefined assemblage of neurons that is functionally distinguishable from other circuits. However, recent studies on the stomatogastric nervous system of Crustacea have suggested that CPGs may not be immutable functional entities7–10. We now report that under an identified neuromodulatory stimulus, the CPG that produces swallowing-like behaviour of the foregut in lobsters is constructed de novo from neurons belonging to other CPGs. Consequently neurons operating independently as members of different circuits may be reconfigured into a new pattern-generating circuit that operates differently from the original circuits. This not only challenges the concept of the CPG being a discrete functional entity, but also demonstrates that a modulatory input can specify an appropriate CPG from a pool of individual neurons of diverse origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delcomyn, F. Science 210, 492–498 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Nagy, F. & Moulins, M. in The Crustacean Stomatogastric System (eds Selverston, A. I. & Moulins, M.) 205–262 (Springer, Berlin, 1987).

    Book  Google Scholar 

  3. Marder, E. Nature 335, 296–297 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Harris-Warrick, R. M. in Neuronal Control of Rhythmic Movements in Vertebrates (eds Cohen, A. V., Rossignol, S. & Grillner, S.) 285–331 (Wiley, New York, 1988).

    Google Scholar 

  5. Stein, P. S. G., Mortin, L. I. & Robertson, G. A. in Neurobiology of Vertebrate Locomotion (eds Grillner, S. et al.) 201–216, (Macmillan, London, 1988).

    Google Scholar 

  6. Grillner, S. Science 228, 143–149 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Meyrand, P., Weimann, J. M. & Marder, E. Soc. Neurosci. Abstr. 14, (1988).

  8. Hooper, S. L. & Moulins, M. Science 244, 1587–1589 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Dickinson, P. S., Mecsas, C. & Marder, E. Nature 344, 155–158 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Weimann, J. M., Meyrand, P. & Marder, E. J. Neurophysiol. 65, 111–122 (1991).

    Article  CAS  Google Scholar 

  11. Selverston, A. I. & Moulins, M. (eds) The Crustacean Stomatogastric System (Springer, Berlin, 1987).

  12. Cazalets, J. R., Nagy, F. & Moulins, M. J. Neurosci. 10, 448–457 (1990).

    Article  CAS  Google Scholar 

  13. Cazalets, J. R., Nagy, F. & Moulins, M. J. Neurosci. 10, 458–468 (1990).

    Article  CAS  Google Scholar 

  14. Robertson, R. M. & Laverack, M. S. Proc. ft Soc. B206, 235–263 (1979).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyrand, P., Simmers, J. & Moulins, M. Construction of a pattern-generating circuit with neurons of different networks. Nature 351, 60–63 (1991). https://doi.org/10.1038/351060a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351060a0

  • Springer Nature Limited

This article is cited by

Navigation