Skip to main content
Log in

Electric-field control of ferromagnetism

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

It is often assumed that it is not possible to alter the properties of magnetic materials once they have been prepared and put into use. For example, although magnetic materials are used in information technology to store trillions of bits (in the form of magnetization directions established by applying external magnetic fields), the properties of the magnetic medium itself remain unchanged on magnetization reversal. The ability to externally control the properties of magnetic materials would be highly desirable from fundamental and technological viewpoints, particularly in view of recent developments in magnetoelectronics and spintronics1,2. In semiconductors, the conductivity can be varied by applying an electric field, but the electrical manipulation of magnetism has proved elusive. Here we demonstrate electric-field control of ferromagnetism in a thin-film semiconducting alloy, using an insulating-gate field-effect transistor structure. By applying electric fields, we are able to vary isothermally and reversibly the transition temperature of hole-induced ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Field-effect control of the hole-induced ferromagnetism in magnetic semiconductor (In,Mn)As field-effect transistors.
Figure 2: Magnetic-field dependence of the sheet Hall resistance RHall proportional to the magnetization of the magnetic semiconductor layer.
Figure 3: RHall versus field curves under three different gate biases.
Figure 4: Temperature dependence of spontaneous Hall resistance RSHall under three different gate biases.

Similar content being viewed by others

References

  1. Prinz, G. A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  CAS  Google Scholar 

  2. de Boeck, J. & Borghs, G. Magnetoelectronics. Phys. World 12, 27–32 (1999).

    Article  CAS  Google Scholar 

  3. Ohno, H., Munekata, H., Penney, T., von Molnár, S. & Chang, L. L. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664–2667 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Munekata, H., Zaslavsky, A., Fumagalli, P. & Gambino, R. J. Preparation of (In,Mn)As/(Ga,Al)Sb magnetic semiconductor heterostructures and their ferromagnetic characteristics. Appl. Phys. Lett. 63, 2929–2931 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Ohno, H. Properties of ferromagnetic III-V semiconductors. J. Mag. Magn. Mater. 200, 110–129 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Koshihara, S. et al. Ferromagnetic order induced by photogenerated carriers in magnetic III-V semiconductor heterostructures of (In,Mn)As/GaSb. Phys. Rev. Lett. 78, 4617–4620 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Munekata, H. et al. Diluted magnetic III-V semiconductors. Phys. Rev. Lett. 63, 1849–1852 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Soo, Y. L., Huang, S. W., Ming, Z. H., Kao, Y. H. & Munekata, H. III-V diluted magnetic semiconductor: Substitutional doping of Mn in InAs. Phys. Rev. B 53, 4905–4909 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  ADS  CAS  Google Scholar 

  11. von Molnár, S., Munekata, H., Ohno, H. & Chang, L. L. New diluted magnetic semiconductor based on III-V compounds. J. Mag. Magn. Mater. 93, 356–364 (1991).

    Article  ADS  Google Scholar 

  12. Shen, A. et al. Epitaxy and properties of InMnAs/AlGaSb diluted magnetic III-V semiconductor heterostructures. Appl. Surf. Sci. 113/114 183–188 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Chien, C. L. & Westgate, C. W. The Hall Effect and Its Applications 43–51 (Plenum, New York, 1980).

    Book  Google Scholar 

  14. Arrott, A. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108, 1394–1395 (1957).

    Article  ADS  CAS  Google Scholar 

  15. Dietl, T., Haury, A. & Merle d'Aubigné, Y. Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors. Phys. Rev. B 55, R3347–R3350 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Lee, B., Jungwirth, T. & MacDonald, A. H. Theory of ferromagnetism in diluted magnetic semiconductor quantum wells. Phys. Rev. B 61, 15606–15609 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  ADS  Google Scholar 

  18. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306-1–10 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science, the Ministry of Education, Japan, and the Mitsubishi Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, H., Chiba, D., Matsukura, F. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000). https://doi.org/10.1038/35050040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050040

  • Springer Nature Limited

This article is cited by

Navigation