Skip to main content
Log in

A ubiquitin-like system mediates protein lipidation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Autophagy is a dynamic membrane phenomenon for bulk protein degradation in the lysosome/vacuole1,2. Apg8/Aut7 is an essential factor for autophagy in yeast3,4,5. We previously found that the carboxy-terminal arginine of nascent Apg8 is removed by Apg4/Aut2 protease, leaving a glycine residue at the C terminus6. Apg8 is then converted to a form (Apg8-X) that is tightly bound to the membrane6. Here we report a new mode of protein lipidation. Apg8 is covalently conjugated to phosphatidylethanolamine through an amide bond between the C-terminal glycine and the amino group of phosphatidylethanolamine. This lipidation is mediated by a ubiquitination-like system. Apg8 is a ubiquitin-like protein that is activated by an E1 protein, Apg7 (refs 7, 8), and is transferred subsequently to the E2 enzymes Apg3/Aut1 (ref. 9). Apg7 activates two different ubiquitin-like proteins, Apg12 (ref. 10) and Apg8, and assigns them to specific E2 enzymes, Apg10 (ref. 11) and Apg3, respectively. These reactions are necessary for the formation of Apg8-phosphatidylethanolamine. This lipidation has an essential role in membrane dynamics during autophagy6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Characterization of molecule X.
Figure 2: Apg8 is activated by Apg7 (E1 in the Apg12 Ubl system).
Figure 3: Apg3 is a conjugating enzyme (E2) for Apg8.
Figure 4: Apg8 ubiquitination-like system is essential for autophagy.

Similar content being viewed by others

References

  1. Baba, M., Takeshige, K., Baba, N. & Ohsumi, Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124, 903–913 (1994).

    Article  CAS  Google Scholar 

  2. Klionsky, D. J. & Ohsumi, Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 1–32 (1999).

    Article  CAS  Google Scholar 

  3. Lang, T . et al. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J. 17, 3597–3607 (1998).

    Article  CAS  Google Scholar 

  4. Kirisako, T .et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147, 435–446 (1999).

    Article  CAS  Google Scholar 

  5. Huang, W. P., Scott, S. V., Kim, J. & Klionsky, D. J. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J. Biol. Chem. 275, 5845–5851 (2000).

    Article  CAS  Google Scholar 

  6. Kirisako, T. et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol. 151, 263–276 (2000).

    Article  CAS  Google Scholar 

  7. Tanida, I. et al. Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy. Mol. Biol. Cell 10, 1367–1379 (1999).

    Article  CAS  Google Scholar 

  8. Kim, J., Dalton, V. M., Eggerton, K. P., Scott, S. V. & Klionsky, D. J. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol. Biol. Cell 10, 1337–1351 (1999).

    Article  CAS  Google Scholar 

  9. Schlumpberger, M. et al. AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae. J. Bacteriol. 179, 1068–1076 (1997).

    Article  CAS  Google Scholar 

  10. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Shintani, T. et al. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J. 18, 5234–5241 (1999).

    Article  CAS  Google Scholar 

  12. Paz, Y., Elazar, Z. & Fass, D. Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J. Biol. Chem. 275, 25445–25450 (2000).

    Article  CAS  Google Scholar 

  13. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993).

    Article  CAS  Google Scholar 

  14. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  Google Scholar 

  15. Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 17, 7151–7160 (1998).

    Article  CAS  Google Scholar 

  16. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  17. Guarino, L. A., Smith, G. & Dong, W. Ubiquitin is attached to membranes of baculovirus particles by a novel type of phospholipid anchor. Cell 80, 301–309 (1995).

    Article  CAS  Google Scholar 

  18. Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature 397, 69–72 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Legesse-Miller, A., Sagiv, Y., Glozman, R. & Elazar, Z. Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J. Biol. Chem. 275, 32966–32973 (2000).

    Article  CAS  Google Scholar 

  20. Sagiv, Y., Legesse-Miller, A., Porat, A. & Elazar, Z. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J. 19, 1494–1504 (2000).

    Article  CAS  Google Scholar 

  21. Kabeya, Y. et al. LC3, a mammalian homolog of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  22. Kametaka, S., Matsuura, A., Wada, Y. & Ohsumi, Y. Structural and functional analyses of APG5, a gene involved in autophagy in yeast. Gene 178, 139–143 (1996).

    Article  CAS  Google Scholar 

  23. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

    Google Scholar 

  24. Rose, M. D., Winston, F. & Hieter, P. Methods in Yeast Genetics: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1990).

    Google Scholar 

  25. Brusca, J. S. & Radolf, J. D. Isolation of integral membrane proteins by phase partitioning with Triton X-114. Methods Enzymol. 228, 182–193 (1994).

    Article  CAS  Google Scholar 

  26. Fernandez-de-Cossio, J. et al. Automated interpretation of high-energy collision-induced dissociation spectra of singly protonated peptides by ‘SeqMS’, a software aid for de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 12, 1867–1878 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963–3966 (1998).

    Article  CAS  Google Scholar 

  28. Johnson, R. S., Martin, S. A., Biemann, K., Stults, J. T. & Watson, J. T. Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal. Chem. 59, 2621–2625 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. J. Klionsky for the anti-API antibody, A. Kihara for technical advice, and Jun-ichi Osuga for analysis of fatty acids by GC–MS. This work was supported in part by Grants-in-Aid for the Ministry of Education, Science, Culture and Sports of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Ohsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichimura, Y., Kirisako, T., Takao, T. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000). https://doi.org/10.1038/35044114

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35044114

  • Springer Nature Limited

This article is cited by

Navigation