Skip to main content
Log in

Universal quantum computation with the exchange interaction

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Various physical implementations of quantum computers are being investigated, although the requirements1 that must be met to make such devices a reality in the laboratory at present involve capabilities well beyond the state of the art. Recent solid-state approaches have used quantum dots2, donor-atom nuclear spins3 or electron spins4; in these architectures, the basic two-qubit quantum gate is generated by a tunable exchange interaction between spins (a Heisenberg interaction), whereas the one-qubit gates require control over a local magnetic field. Compared to the Heisenberg operation, the one-qubit operations are significantly slower, requiring substantially greater materials and device complexity—potentially contributing to a detrimental increase in the decoherence rate. Here we introduced an explicit scheme in which the Heisenberg interaction alone suffices to implement exactly any quantum computer circuit. This capability comes at a price of a factor of three in additional qubits, and about a factor of ten in additional two-qubit operations. Even at this cost, the ability to eliminate the complexity of one-qubit operations should accelerate progress towards solid-state implementations of quantum computation1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Possible layouts of spin-1/2 devices.
Figure 2: Circuits for implementing single-qubit and two-qubit rotations using serial operations.

Similar content being viewed by others

References

  1. DiVincenzo, D. P. The physical implementation of quantum computation. Fortsch. Phys. (special issue; Experimental Proposals for Quantum Computation) (in the press); also as preprint quant-ph/0002077 at 〈http://xxx.lanl.gov〉 (2000).

  2. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120– 126 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Kane, B. E. A silicon-based nuclear-spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Vrijen, R. et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62 , 012306-1 to 012306-10 (2000).

    Article  ADS  Google Scholar 

  5. Burkard, G., Loss, D. & DiVincenzo, D. P. Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 ( 1995).

    Article  ADS  CAS  Google Scholar 

  7. DiVincenzo, D. P. et al. Quantum computation and spin electronics. In Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics (eds Kulik, I. O. & Ellialtioglu, R.) (NATO ASI, in the press), also as preprint cond-mat/9911245 at 〈http://xxx.lanl.gov〉 (2000 ).

    Google Scholar 

  8. Bacon, D., Kempe, J., Lidar, D. A. & Whaley, K. B. Universal fault-tolerant computation on decoherence-free subspaces. Phys. Rev. Lett. 85, 1758–1761 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Viola, L., Knill, E. & Lloyd, S. Dynamical generation of noiseless quantum subsystems. Phys. Rev. Lett. 85, 3520– 3523 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Kempe, J., Bacon, D., Lidar, D. A. & Whaley, K. B. Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A (submitted); also as preprint quant-ph/0004064 at 〈http://xxx.lanl.gov〉 (2000).

  11. Zurek, W. H. Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  12. Palma, G. M., Suominen, K.-A. & Ekert, A. K. Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567–584 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  13. Duan, L.-M. & Guo, G.-C. Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment. Phys. Rev. A 57, 737–741 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594– 2597 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Zanardi, P. & Rasetti, M. Error avoiding quantum codes. Mod. Phys. Lett. B 11, 1085–1093 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Knill, E. & Laflamme, R. & Viola, L. Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525– 2528 (2000).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Kitaev, A. Y. Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191–1249 ( 1997).

    Article  MathSciNet  Google Scholar 

  18. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information Appendix 3 (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  19. Makhlin, Y. Nonlocal properties of two-qubits gates and mixed states and optimization of quantum computations. Preprint quant-ph/0002045 at 〈http://xxx.lanl.gov〉 (2000).

  20. Preskill, J. in Introduction to Quantum Computation and Information (eds Lo, H.-K., Popescu, S. & Spiller, T.) 213–269 (World Scientific, Singapore, 1998).

    Book  Google Scholar 

  21. Lidar, D. A., Bacon, D. & Whaley, K. B. Concatenating decoherence-free subspaces with quantum error correcting codes. Phys. Rev. Lett. 82, 4556–4559 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. O. Boykin and B. M. Terhal for discussions. D.P.D., D.B., J.K. and K.B.W. were supported by the National Security Agency and the Advanced Research and Development Activity. D.P.D. also thanks the UCLA DARPA program on spin-resonance transistors for support, and is also grateful for the hospitality of D. Loss at the University of Basel, where much of this work was completed. J.K. also acknowledges support from the US National Science Foundation. G.B. is supported in part by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. DiVincenzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiVincenzo, D., Bacon, D., Kempe, J. et al. Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000). https://doi.org/10.1038/35042541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35042541

  • Springer Nature Limited

This article is cited by

Navigation