Skip to main content

Advertisement

Log in

Biogeography

A marine Wallace's line?

  • Brief Communication
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

As most coral reef organisms with a pelagic larval phase are presumed to be readily dispersed between distant populations, sea-surface current patterns should be crucial for predicting ecological and genetic connections among threatened reef populations1. Here we investigate this idea by examining variations in the genetic structuring of populations of the mantis shrimp Haptosquilla pulchella taken from 11 reef systems in Indonesia, in which a series of 36 protected areas2 are presumed to be connected by strong ocean currents. Our results reveal instead that there is a strong regional genetic differentiation that mirrors the separation of ocean basins during the Pleistocene low-sea-level stands, indicating that ecological connections are rare across distances as short as 300–400 km and that biogeographic history also influences contemporary connectivity between reef ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Ocean currents and genetic structure of stomatopod populations.

Similar content being viewed by others

References

  1. Roberts, C. M. Science 278, 1454–1457 ( 1997).

    Article  ADS  CAS  Google Scholar 

  2. Llewellyn, G., Jepson, P., Schweithelm, J. & Kirtchener, D. Conservation Assessment of Wallacea Bioregion (Wallacea Program Report, 1999).

    Google Scholar 

  3. Wyrtki, K. NAGA Report,Volume 2: Physical Oceanography of the South East Asian Waters (Scripps Institute of Oceanography, San Diego, 1961 ).

    Google Scholar 

  4. Lukas, R. et al. J. Geophys. Res. 96, 7089– 7104 (1991).

    Article  ADS  Google Scholar 

  5. Swearer, S. E., Caselle, J. E., Lea, D. W. & Warner, R. R. Nature 402, 799–802 ( 1999).

    Article  ADS  CAS  Google Scholar 

  6. Jones, G. P., Milicich, M. J., Emslie, M. J. & Lunow, C. Nature 402, 802–804 ( 1999).

    Article  ADS  CAS  Google Scholar 

  7. Knowlton, N. & Keller, B. D. Bull. Mar. Sci. 39 , 213–223 (1986).

    Google Scholar 

  8. Excoffier, L., Smouse, P. E. & Quattro, J. M. Genetics 4, 479– 491 (1992).

    Article  Google Scholar 

  9. Porter, S. C. Quat. Res. 32, 245–261 ( 1989).

    Article  ADS  Google Scholar 

  10. McManus, J. W. Proc. 5th Int. Coral Reef Symp. 4, 133– 138 (1985).

    Google Scholar 

  11. Randall, J. E. Zool. Stud. 37, 227–268 (1998).

    Google Scholar 

  12. Palumbi, S. R. Coral Reefs 16 (suppl.), 47– 52 (1997).

    Article  Google Scholar 

  13. Palumbi, S. R. in Marine Community Ecology (eds Berness, M., Gaines, S. & Hay, M.) (Sinauer, Sunderland, MA, in the press).

  14. Barber, P. H. & Erdmann, M. V. J. Crust. Biol. 20 , 20–36 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Barber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barber, P., Palumbi, S., Erdmann, M. et al. A marine Wallace's line?. Nature 406, 692–693 (2000). https://doi.org/10.1038/35021135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35021135

  • Springer Nature Limited

This article is cited by

Navigation