Skip to main content
Log in

Water activity as the determinant for homogeneous ice nucleation in aqueous solutions

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The unique properties of water in the supercooled (metastable) state are not fully understood1. In particular, the effects of solutes and mechanical pressure on the kinetics of the liquid-to-solid phase transition of supercooled water and aqueous solutions to ice have remained unresolved. Here we show from experimental data that the homogeneous nucleation of ice from supercooled aqueous solutions is independent of the nature of the solute, but depends only on the water activity of the solution—that is, the ratio between the water vapour pressures of the solution and of pure water under the same conditions. In addition, we show that the presence of solutes and the application of pressure have a very similar effect on ice nucleation. We present a thermodynamic theory for homogeneous ice nucleation, which expresses the nucleation rate coefficient as a function of water activity and pressure. Recent observations from clouds containing ice are in good agreement with our theory and our results should help to overcome one of the main weaknesses of numerical models of the atmosphere, the formulation of cloud processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Experimental data used in the present analysis.
Figure 2: Variation of the homogeneous ice nucleation rate coefficient J with water activity and temperature.
Figure 3: Ice saturation ratios, Si, for different aerosol radii, r, as a function of temperature.

Similar content being viewed by others

References

  1. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Pruppacher, H. R. & Klett, J. D. Microphysics Of Clouds And Precipitation 79–80 & 205–215 (Kluwer, Dordrecht, 1997).

    Google Scholar 

  3. Mishima, O. Relationship between melting and amorphization of ice. Nature 384, 546–549 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Kanno, H., Speedy, R. & Angell, C. A. Supercooling of water to -92 °C under pressure. Science 189, 880– 881 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Rasmussen, D. H. Thermodynamics and nucleation phenomena - a set of experimental observations. J. Cryst. Growth 56, 56– 66 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Kanno, H. & Angell, C. A. Homogeneous nucleation and glass formation in aqueous alkali halide solutions at high pressures. J. Phys. Chem. 81, 2639–2643 (1977).

    Article  CAS  Google Scholar 

  7. Leberman, R. & Soper, A. K. Effect of high salt concentrations on water structure. Nature 378, 364– 366 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Rasmussen, D. H. & MacKenzie, A. P. in Water Structure at the Water Polymer Interface (ed. Jellinek, H. H. G.) 126–145 (Plenum, New York, 1972).

    Book  Google Scholar 

  9. Weast, R. C. (ed.) Handbook Of Chemistry And Physics D139–D178 (Chemical Rubber Company, Cleveland, 1966).

    Google Scholar 

  10. Baker, M. B. Cloud microphysics and climate. Science 276, 1072–1078 (1997).

    Article  CAS  Google Scholar 

  11. Murphy, D. M., Thomson, D. S. & Mahoney, M. J. In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers. Science 282, 1664–1669 ( 1998).

    Article  ADS  CAS  Google Scholar 

  12. Johari, G. P., Fleissner, G., Hallbrucker, A. & Mayer, E. Thermodynamic continuity between glassy and normal water. J. Phys. Chem. 98, 4719–4725 ( 1994).

    Article  CAS  Google Scholar 

  13. Gagnon, R. E., Kiefte, H., Clouter, M. J. & Whalley, E. Pressure dependence of the elastic constants of ice Ih to 2.8 kbar by Brillouin spectroscopy. J. Chem. Phys. 89, 4522– 4528 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Dantl, G. in Physics of Ice (eds Riehl, N., Bullemer, B. & Engelhardt, H.) 223–230 (Plenum, New York, 1969).

    Book  Google Scholar 

  15. Hare, D. E. & Sorensen, C. M. The density of supercooled water. II. Bulk samples cooled to the homogeneous nucleation limit. J. Chem. Phys. 87, 4840–4845 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Mishima, O., Calvert, L. D. & Whalley, E. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314, 76–78 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Speedy, R. J., Debenedetti, P. G., Smith, R. S., Huang, C. & Kay, B. D. The evaporation rate, free energy, and entropy of amorphous water at 150K. J. Chem. Phys. 105, 240–244 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Koop, T., Ng, H. P., Molina, L. T. & Molina, M. J. A new optical technique to study aerosol phase transitions: the nucleation of ice from H 2SO4 aerosols. J. Phys. Chem. A 102, 8924–8931 (1998).

    Article  CAS  Google Scholar 

  19. Chang, H. Y. A., Koop, T., Molina, L. T. & Molina, M. J. Phase transitions in emulsified HNO3/H2O and HNO3/H 2SO4/H2O solutions. J. Phys. Chem. A 103, 2673–2679 ( 1999).

    Article  CAS  Google Scholar 

  20. Koop, T., Bertram, A. K., Molina, L. T. & Molina, M. J. Phase transitions in aqueous NH4HSO4 solutions. J. Phys. Chem. A 103, 9042– 9048 (1999).

    Article  CAS  Google Scholar 

  21. Bertram, A. K., Koop, T., Molina, L. T. & Molina, M. J. Ice formation in (NH4)2SO4-H2O particles. J. Phys. Chem. A 104, 584– 588 (2000).

    Article  CAS  Google Scholar 

  22. Angell, C. A., Sare, E. J., Donnella, J. & MacFarlane, D. R. Homogeneous nucleation and glass transition temperatures in solutions of Li salts in D2O and H2O. Doubly unstable glass regions. J. Phys. Chem. 85, 1461– 1464 (1981).

    Article  CAS  Google Scholar 

  23. Oguni, M. & Angell, C. A. Heat capacities of H2O+H 2O2, and H2O+N2H4, binary solutions: isolation of a singular component for cp of supercooled water. J. Chem. Phys. 73, 1948– 1954 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Schäfer, K. & Lax, E. (eds) Landoldt-Börnstein, Zahlenwerte und Funktionen Part 2b (Springer, Berlin, 1962).

    Google Scholar 

  25. Clegg, S. L., Brimblecombe, P. & Wexler, A. S. Thermodynamic model of the system H+-NH+4-SO2-4-NO- 3-H2O at tropospheric temperatures. J. Phys. Chem. A 102, 2137–2154 ( 1998).

    Article  CAS  Google Scholar 

  26. Krämer, B. Laboruntersuchungen zum Gefrierprozeβ in polaren stratosphärischen Wolken PhD thesis, Free University Berlin (1998 ).

  27. MacFarlane, D. R., Kadiyala, R. K. & Angell, C. A. Homogeneous nucleation and growth of ice from solutions. TTT curves, the nucleation rate, and the stable glass criterion. J. Chem. Phys. 79, 3921–3927 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Sassen, K. & Dodd, G. C. Homogeneous nucleation rate for highly supercooled cirrus cloud droplets. J. Atmos. Sci. 45, 1357–1369 (1988).

    Article  ADS  Google Scholar 

  29. Heymsfield, A. J., Miloshevich, L. M., Twohy, C., Sachse, G. & Oltmans, S. Upper-tropospheric relative humidity observations and implications for cirrus ice nucleation. Geophys. Res. Lett. 25, 1343–1346 (1998).

    Article  ADS  Google Scholar 

  30. Carslaw, K. S. et al. Particle microphysics and chemistry in remotely observed mountain polar stratospheric clouds. J. Geophys. Res. 103, 5785–5796 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Bertram, C. Jeffery, G. Johari, O. Mishima, and H. Vortisch for helpful discussions and for providing us with original data sets. We also thank M. Canagaratna and J. Staehelin for helpful comments on manuscript drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Koop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koop, T., Luo, B., Tsias, A. et al. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611–614 (2000). https://doi.org/10.1038/35020537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020537

  • Springer Nature Limited

This article is cited by

Navigation