Skip to main content
Log in

Turbulent convection at very high Rayleigh numbers

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

An Erratum to this article was published on 27 July 2000

Abstract

Turbulent convection occurs when the Rayleigh number (Ra)—which quantifies the relative magnitude of thermal driving to dissipative forces in the fluid motion—becomes sufficiently high. Although many theoretical and experimental studies of turbulent convection exist, the basic properties of heat transport remain unclear. One important question concerns the existence of an asymptotic regime that is supposed to occur at very high Ra. Theory predicts that in such a state the Nusselt number (Nu), representing the global heat transport, should scale as Nu ∝ Raβ with β = 1/2. Here we investigate thermal transport over eleven orders of magnitude of the Rayleigh number (106 ≤ Ra ≤ 1017), using cryogenic helium gas as the working fluid. Our data, over the entire range of Ra, can be described to the lowest order by a single power-law with scaling exponent β close to 0.31. In particular, we find no evidence for a transition to the Ra1/2 regime. We also study the variation of internal temperature fluctuations with Ra, and probe velocity statistics indirectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: A schematic view of the experimental apparatus.
Figure 2: Log–log plot of the Nusselt number (Nu) versus Rayleigh number (Ra).
Figure 3: The probability density function (PDF) of the temperature fluctuations in the centre of the cell measured at different Ra as indicated.
Figure 4: The power spectral density (PSD) of the temperature fluctuations in the cell measured at Ra = 6 × 1011.
Figure 5: A rough measure of the large-scale velocity in the cell.

Similar content being viewed by others

References

  1. Siggia,E. D. High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137–168 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  2. Grossmann,S. & Lohse,D. Scaling in thermal convection: A unifying theory. J. Fluid Mech. (in the press).

  3. Priestley,C. H. B. Turbulent Transfer in the Lower Atmosphere (Univ. Chicago Press, Chicago, 1959).

    Google Scholar 

  4. Malkus,W. V. R. Heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196–212 ( 1954).

    Article  ADS  MathSciNet  Google Scholar 

  5. Threlfall,D. C. Free convection in low-temperature gaseous helium. J. Fluid Mech. 67, 17–28 ( 1975).

    Article  ADS  Google Scholar 

  6. Wu,X. -Z. & Libchaber,A. Scaling relations in thermal turbulence: the aspect ratio dependence. Phys. Rev. A 45, 842–845 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Wu,X.-Z. Along a Road to Developed Turbulence: Free Thermal Convection in Low Temperature Helium Gas PhD thesis, Univ. Chicago (1991).

    Google Scholar 

  8. Castaing,B. et al. Scaling of hard thermal turbulence in Rayleigh-Benard convection. J. Fluid Mech. 204, 1– 29 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Chavanne,X. et al. Observation of the ultimate regime in Rayleigh-Benard convection. Phys. Rev. Lett. 79, 3648– 3651 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Shen,Y., Tong,P. & Xia,K.-Q. Turbulent convection over rough surfaces. Phys. Rev. Lett. 76, 908–911 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Cioni,S., Ciliberto,S. & Sommeria, J. Strongly turbulent Rayleigh-Benard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111–140 ( 1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Glazier,J. A., Segawa,T., Naert,A. & Sano,M. Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers. Nature 398, 307–310 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Ashkenazi,S. & Steinberg,V. High Rayleigh number turbulent convection in a gas near the gas-liquid critical point. Phys. Rev. Lett. 83, 3641–3644 ( 1999).

    Article  ADS  CAS  Google Scholar 

  14. Ashkenazi,S. & Steinberg,V. Spectra and statistics of velocity and temperature fluctuations in turbulent convection. Phys. Rev. Lett. 83, 4760–4763 ( 1999).

    Article  ADS  CAS  Google Scholar 

  15. Shraiman,B. I. & Siggia,E. D. Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42 , 3650–3653 (1990).

    Article  ADS  CAS  Google Scholar 

  16. She,Z.-S. On the scaling laws of thermal turbulent convection. Phys. Fluids A 1, 911–913 ( 1989).

    Article  ADS  Google Scholar 

  17. Kraichnan,R. H. Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 1374–1389 ( 1962).

    Article  ADS  Google Scholar 

  18. Howard,L. N. Heat transport by turbulent convection. J. Fluid Mech. 17, 405–432 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  19. Constantin,P. & Doering,C. Infinite Prandtl number convection. J. Stat. Phys. 94, 159– 172 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  20. Arp,V. D. & McCarty,R. D. The Properties Of Critical Helium Gas Technical Report, Univ. Oregon (1998).

    Google Scholar 

  21. McCarty,R. D. Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 Atmospheres (Technical Note 631, National Bureau of Standards, Gaithersburg, Maryland, 1972).

    Book  Google Scholar 

  22. Toomre,J., Gough,D. O. & Spiegel, E. A. Numerical solution of single-mode convection equation. J. Fluid Mech. 79, 1–31 (1977).

    Article  ADS  Google Scholar 

  23. Busse,F. H. Nonlinear properties of thermal convection. Rep. Prog. Phys. 41, 1930–1967 (1978).

    Article  ADS  Google Scholar 

  24. Chavanne,X. et al. High Rayleigh number convection with gaseous helium at low temperature. J. Low Temp. Phys. 104, 109 –129 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Verzicco,R. & Camussi,R. in Advances in Turbulence VII (ed. Frisch, U.) 399–402 (Kluwer Academic, Dordrecht, 1998).

    Book  Google Scholar 

  26. Bolgiano,R. Jr Turbulent spectra in a stably stratified atmosphere. J. Geophys. Res. 64, 2226–2229 ( 1959).

    Article  ADS  Google Scholar 

  27. Monin,A. S. & Yaglom,A. M. Statistical Fluid Mechanics Vol. 2 (M.I.T Press, Cambridge, Massachusetts, 1975 ).

    Google Scholar 

  28. Ciliberto,S., Cioni,S. & Laroche,C. Large scale flow properties of turbulent thermal convection. Phys. Rev. E 54, 5901– 5905 (1996).

    Article  ADS  Google Scholar 

  29. Krishnamurti,R. & Howard,L. N. Large scale flow generation in turbulent convection. Proc. Natl Acad. Sci. USA 78, 1981–1985 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. McAshan for his assistance in the design of the cryostat, and many colleagues for useful discussions. This research was supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Sreenivasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemela, J., Skrbek, L., Sreenivasan, K. et al. Turbulent convection at very high Rayleigh numbers. Nature 404, 837–840 (2000). https://doi.org/10.1038/35009036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35009036

  • Springer Nature Limited

This article is cited by

Navigation