Skip to main content
Log in

Inhibition by dopamine of (Na+ + K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE (Na+ + K+)ATPase, an integral membrane protein located in virtually all animal cells, couples the hydrolysis of ATP to the countertransport of Na+ and K+ ions across the plasma membrane1,2. In neurons, a large portion of cellular energy is expended by this enzyme to maintain the ionic gradients that underlie resting and action potentials. Although neurotransmitter regulation of the enzyme in brain has been reported3,4, such regulation has been characterized either as a nonspecific phenomenon5,6 or as an indirect effect of neurotransmitter-induced changes in ionic gradients7. We report here that the neurotransmitter dopamine, through a synergistic effect on D1 and D2 receptors, inhibits the (Na+ + K+)ATPase activity of isolated striatal neurons. Our data provide unequivocal evidence for regulation by a neurotransmitter of a neuronal ion pump. They also demonstrate that synergism between D1 and D2 receptors, which underlies many of the electrophysical and behavioural effects of dopamine in the mammalian brain8, can occur on the same neuron. In addition, the results support the possibility that dopamine and other neurotransmitters can regulate neuronal excitability through the novel mechanism of pump inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skou, J. C. Physiol. Rev. 45, 596–617 (1965).

    Article  CAS  Google Scholar 

  2. Glynn, I. M. in The Enzymes of Biological Membranes (ed. Martonosi, A. N.) 35–114 (Plenum, New York, 1985).

    Book  Google Scholar 

  3. Phillis, J. W. & Wu, P. H. Prog. Neurobiol. 17, 141–184 (1981).

    Article  CAS  Google Scholar 

  4. Smith, P. A. Trends pharmac. Sci. 422–425 (1984).

  5. Van der Krogt, J. & Belfriod, R. D. M. Biochem. Pharmac. 29, 857–868 (1980).

    Article  CAS  Google Scholar 

  6. Lafferty, P., Jackson, D. M. & Malor, R. Biochem. Pharmac. 34, 3591–3596 (1985).

    Article  CAS  Google Scholar 

  7. Smith, P. A., Thompson, E. L. & Zidichouski, J. A. Neurosci. Lett. 71, 72–76 (1986).

    Article  CAS  Google Scholar 

  8. Clark, D. & White, F. J. Synapse 1, 347–388 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Gerfen, C. J. Electron Microsc. Tech. 10, 265–281 (1988).

    Article  CAS  Google Scholar 

  10. Da Prada, M., Keller, H. H., Pieri, L., Kettler, R. & Haefely, W. E. Experimentia 40, 1165–1171 (1984).

    Article  CAS  Google Scholar 

  11. Aperia, A., Bertorello, A. & Seri, I. Am. J. Physiol. 252, F39–F45 (1987).

    CAS  PubMed  Google Scholar 

  12. Bertorello, A. & Aperia, A. Acta physiol. scand. 132, 441–443 (1988).

    Article  CAS  Google Scholar 

  13. Bertorello, A. & Aperia, A. Am. J. Physiol. 256, F57–F69 (1989).

    CAS  PubMed  Google Scholar 

  14. Bertorello, A. & Aperia, A. Am. J. Physiol. 256, F370–F373 (1989).

    CAS  PubMed  Google Scholar 

  15. Bertorello, A. & Aperia, A. Acta physiol. scand. 130, 571–574 (1987).

    Article  CAS  Google Scholar 

  16. Gadsby, D. C. Nature 306, 691–693 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Carlsson, A. Neuropsychopharmacology 1, 179–186 (1988).

    Article  CAS  Google Scholar 

  18. Freedman, J. E. & Weight, F. F. Proc. natn. Acad. Sci. U.S.A. 85, 3618–3622 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Mercuri, N. et al. Brain Res. 385, 110–121 (1985).

    Article  Google Scholar 

  20. Richfield, E. K., Penny, J. B. & Young, A. B. Neuroscience 30, 767–777 (1989).

    Article  CAS  Google Scholar 

  21. Stoof, J. C. & Kebabian J. W. Life Sci. 35, 2281–2296 (1984).

    Article  CAS  Google Scholar 

  22. Wang, R. Y., White, F. J., Mereu, G. & Hu, X. T. in Dopamine Receptors (ed. Creese, I.) 153–173 (Alan Liss, New York, 1987).

    Google Scholar 

  23. Kebabian, J. W., Petzold, G. L. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 69, 2145–2149 (1972).

    Article  ADS  CAS  Google Scholar 

  24. Hemmings, H. C., Walaas, I. S., Ouimet, C. C. & Greengard, P. in Receptor Biochemistry and Methodology, Vol. 9: Structure and Function of Dopamine Receptors (eds Creese, I. & Fraser, C. M.) 115–151 (Liss, New York, 1987).

    Google Scholar 

  25. Kay, A. R. & Wong, R. K. S. J. Neurosci. Meth. 16, 227–238 (1986).

    Article  CAS  Google Scholar 

  26. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  27. Sharp, T., Zetterstrom, T. & Ungerstedt, U. J. Neurochem 47, 113–122 (1986).

    Article  CAS  Google Scholar 

  28. Lowry, O. K., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertorello, A., Hopfield, J., Aperia, A. et al. Inhibition by dopamine of (Na+ + K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 347, 386–388 (1990). https://doi.org/10.1038/347386a0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347386a0

  • Springer Nature Limited

This article is cited by

Navigation