Skip to main content
Log in

Liquid immiscibility in a nephelinite–carbonate system at 25 kbar and implications for carbonatite origin

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

MANTLE-DERIVED carbonate-rich melts may have an important role in mantle metasomatism1,2, and may serve as parent liquids for crustal carbonatite magmas3,4. Experiments have shown that carbonatitic melts can be produced by partial melting of peridotite + CO2 + H2O above 22 kbar (ref. 3), and that silicate and carbonate liquids are immiscible between 2 and 15 kbar for a wide range of Ca/Na ratios5–7. We have determined the extent of silicate-carbonate liquid immiscibility at 25 kbar and 1,050–1,300°C using mixtures of magnesian nephelinite, dolomite and sodium carbonate with and without water. In contrast to the low-pressure data, the two-liquid field at 25 kbar is restricted to more sodium-rich compositions, far removed from natural mantle melts. Our experimental results suggest that neither partial melting of carbonated peridotite, nor extensive fractional crystallization of silicate magmas at depths corresponding to 25 kbar, are likely to generate carbonatitic magmas by liquid immiscibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meen, J. K. Geol. Soc. Am. Spec. Pap. 215, 91–100 (1987).

    CAS  Google Scholar 

  2. Green, D. H. & Wallace, M. E. Nature 336, 459–462 (1988).

    Article  CAS  Google Scholar 

  3. Wallace, M. E. & Green, D. H. Nature 335, 343–346 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Gittins, J. in Carbonatites (ed. Bell, J. K.) 580–600 (Allen & Unwin, London, 1989).

    Google Scholar 

  5. Koster van Groos, A. F. Am. J. Sci. 275, 163–185 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Kjarsgaard, B. A. & Hamilton, D. L. in Carbonatites (ed. Bell, J. K.) 388–404 (Allen & Unwin, London, 1989).

    Google Scholar 

  7. Koster van Groos, A. F. & Wyllie, P. J. Am. J. Sci. 273, 465–487 (1973).

    Article  ADS  CAS  Google Scholar 

  8. Wyllie, P. J. & Huang, W. L. Contr. Miner. Petrol. 54, 79–107 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Wyllie, P. J. & Huang, W. L. Geology 4, 21–24 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Wyllie, P. J. J. Geol. 85, 187–207 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Bedson, P. & Hamilton, D. L. in Progress in Experimental Petrology: Fifth Progress Report on Research Supported by N.E.R.C. 1978–1980 29–33 (Eaton, Wallasey, 1981).

  12. Clague, D. A. & Frey F. A. J. Petrol. 23, 447–504 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Thompson, R. N. & Kushiro, I. Yb. Carnegie Inst. Wash. 71, 615–616 (1972).

    Google Scholar 

  14. Wendlandt, R. F. & Harrison, W. J. Contr. Miner. Petrol. 69, 409–419 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Basaltic Volcanism Study Project, Basaltic Volcanism on the Terrestrial Planets (Pergamon, New York, 1981).

  16. Kay, R. W. & Gast, P. W. J. Geol. 81, 653–682 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Frey, F. A., Green, D. H. & Roy, S. D. J. Petrol. 19, 463–513 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, M., Wyllie, P. Liquid immiscibility in a nephelinite–carbonate system at 25 kbar and implications for carbonatite origin. Nature 346, 168–170 (1990). https://doi.org/10.1038/346168a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346168a0

  • Springer Nature Limited

This article is cited by

Navigation