Skip to main content
Log in

Femtosecond laser observations of molecular vibration and rotation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

ULTRAFAST molecular vibrations and rotations are the fundamental motions that characterize chemical bonding and determine reaction dynamics at the molecular level. The timescales for these motions are typically 10−10 s for vibrations and 10−13 s for rotations. For decades, time-integrated (frequency-resolved) spectros-copy has provided a powerful tool for probing the dynamics of motion, but the motions themselves are not 'seen' directly in real-time. With femtosecond laser techniques1–4 it is now possible to follow the motions of isolated molecular systems as they occur. The requirement is that the system is excited (for vibration) and aligned (for rotation) on a timescale shorter than the vibrational and rotational periods. Here we report real-time observations of these molecular motions. The system—in this case, molecular iodine—is prepared in the particular state(s) of interest by coherent excitation with an initial femtosecond laser pulse, and the subsequent motions are probed with successive femtosecond pulses. The probe monitors changes in the interatomic distance (vibration) or molecular orientation (rotation), so that the measured signal provides direct 'snapshots' of the molecular motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zewail, A. H. Science 242, 1645–1653 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Zewail, A. H. & Bernstein, R. B. Chem. Engng News 66, 24–43 (1988).

    Article  CAS  Google Scholar 

  3. Smith, I. W. M. Nature 328, 760–761 (1987).

    Article  ADS  Google Scholar 

  4. Baggot, J. New Scientist 1669, 58–62 (1989).

    Google Scholar 

  5. Dantus, M., Rosker, M. J. & Zewail, A. H. J. chem. Phys. 89, 6128–6140 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Bowman, R. M., Dantus, M. & Zewail, A. H. Chem. Phys. Lett. 161, 297–302 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Rose, T. S., Rosker, M. J. & Zewail, A. H. J. chem. Phys. 91, 7415–7436 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Dantus, M., Bowman, R. M., Gruebele, M. & Zewail, A. H. J. chem. Phys. 91, 7437–7450 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Zewail, A. H. J. chem. Soc. Faraday Trans. II 85, 1221–1242 (1989).

    Article  CAS  Google Scholar 

  10. Dantus, M., Bowman, R. M., Baskin, J. S. & Zewail, A. H. Chem. Phys. Lett. 189, 406–412 (1989).

    Article  ADS  Google Scholar 

  11. Felker, P. M. & Zewail, A. H. J. chem. Phys. 86, 2460–2482 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Baskin, J. S., Felker, P. M. & Zewail, A. H. J. chem. Phys. 86, 2483–2499 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Mulliken, R. S. J. chem. Phys. 55, 288–309 (1971).

    Article  ADS  CAS  Google Scholar 

  14. Tellinghuisen, J. J. chem. Phys. 58, 2821–2834 (1973).

    Article  ADS  Google Scholar 

  15. Gerstenkorn, S. & Luc, P. J. Phys. (Paris) 46, 867–881 (1985).

    Article  CAS  Google Scholar 

  16. Brand, J. C. D. & Hoy, A. R. Appl. Spectrosc. Rev. 23, 285–327 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dantus, M., Bowman, R. & Zewail, A. Femtosecond laser observations of molecular vibration and rotation. Nature 343, 737–739 (1990). https://doi.org/10.1038/343737a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343737a0

  • Springer Nature Limited

This article is cited by

Navigation