Skip to main content
Log in

A transgenic mouse model of sickle cell disorder

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A SINGLE base-pair mutation (βs) in codon 6 of the human β-globin gene, causing a single amino-acid substitution, is the cause of sickle cell anaemia1. The mutant haemoglobin molecule, HbS, polymerizes when deoxygenated and causes deformation of the erythrocytes to a characteristic 'sickled' shape. Sickling of cells in small vessels causes painful crises and other life-threatening complications2,3. Although the molecular basis for sickle cell anaemia has been known for 30 years, no definitive treatment is available4. An animal model of sickle cell anaemia would not only allow a detailed analysis of the factors that initiate erythrocyte sickling in vivo and of the pathophysiology of the disease, but would also permit the development of novel approaches to the treatment of the disease. By using the dominant control region sequences from the human β-globin locus, together with human α and βS-globin genes, we have obtained three transgenic mice with HbS levels ranging from 10 to 80% of total haemoglobin in their red cells. As observed in homozygous and heterozygous Hbspatients, the erythrocytes of this mouse sickle readily on deoxygenation. Irreversibly sickled cells2,3, which are characteristic of sickle-cell patients homozygous for βs, are also observed in the peripheral blood of the mouse with high levels of HbS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingram, V. A. Nature 178, 792 (1956).

    Article  ADS  CAS  Google Scholar 

  2. Serjeant G. R. Sickle Cell Disease (Oxford University Press, 1985).

    Google Scholar 

  3. Schechter, A. N., Noguchi, C. T. & Rodgers, G. P. in The Molecular Basis of Blood Diseases (eds Stamatoyannopoulos, G., Nienhuis, A, W., Leder, P. & Majerus, P. W.) 179–218 (W. B. Saunders, Philadelphia, 1987).

    Google Scholar 

  4. Luzzatto, L. & Goodfellow, P. Nature 337, 17–18 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Grosveld, F., Blom van Assendelft, G., Greaves, D. R. & Kollias, G. Cell 51, 975–985 (1987).

    Article  CAS  Google Scholar 

  6. Blom van Assendelft, G., Hanscombe, O., Grosveld, F. & Greaves, D. R. Cell 56, 969–977 (1989).

    Article  CAS  Google Scholar 

  7. Talbot, D. et al. Nature 338, 352–355 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Hanscombe, O. et al. Genes Dev. 3, 1572–1581 (1989).

    Article  CAS  Google Scholar 

  9. Ryan, T. M. et al. Genes Dev. 3, 314–323 (1989).

    Article  CAS  Google Scholar 

  10. Behringer, R. R. et al. Science 245, 971–973 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Ryan, T. M., Behringer, R. R., Townes, T. M., Palmiter, R. D. & Brinster, R. L. Proc. natn. Acad. Sci. U.S.A. 86, 37–41 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Collis, P., Antoniou, M. & Grosveld, F. EMBO J. (in the press).

  13. Daland, Q. A. & Castle, W. B. J. Lab. clin. Med. 33, 1082–1088 (1948).

    CAS  PubMed  Google Scholar 

  14. Rhoda, M. D. et al. Biochim. biophys. Acta 953, 208–212, (1988).

    Article  Google Scholar 

  15. Bentles, J. F. & Milner, D. F. A. J. clin. Invest. 47, 1731–1741 1968).

    Article  Google Scholar 

  16. Noguchi, C. T. & Schecter, A. N. Blood 58, 1057–1068.

  17. Padilla, F., Bromberg, P. A. & Jensen, W. N. Blood 41, 653–660 (1978).

    Google Scholar 

  18. van Ehrenstein, G. Acta physiol. Scand. 44, 80–91 (1948).

    Article  Google Scholar 

  19. van Patten, L. M. Blood 13, 789–794 (1958).

    Google Scholar 

  20. Edington, G. M. & Lehmann, H. Br. Med. J. i, 1308–1311 (1955).

    Article  Google Scholar 

  21. Conley, C. L., Weatherall, D. J., Richardson, S. N., Shepard, M. K. & Charache, S. Blood 21, 261–281 (1963).

    CAS  PubMed  Google Scholar 

  22. Talbot, J. F., Bird, A. C. & Sarjeant, G. R. Br. J. Ophthalmol. 67, 777–778 (1983).

    Article  CAS  Google Scholar 

  23. Martinell, J., Whitney, J. B. III, Popp, R. A., Russell, L. B. & Anderson, W. F. Proc. natn. Acad. Sci. U.S.A. 78, 5056–5060 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Skow, L. C. et al. Cell 34, 1043–1052.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greaves, D., Fraser, P., Vidal, M. et al. A transgenic mouse model of sickle cell disorder. Nature 343, 183–185 (1990). https://doi.org/10.1038/343183a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343183a0

  • Springer Nature Limited

This article is cited by

Navigation