Skip to main content
Log in

Complete replacement of mitochondrial DNA in Drosophila

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THE introduction of foreign mitochondria or mitochondrial DNA into a cell is a useful technique for clarifying the molecular mechanisms responsible for the maintenance of mitochondria. Novel combinations of mitochondrial and nuclear genomes have been studied in mammalian cells in culture1–6 and in yeast7,8,14,15. In Drosophila, we have recently constructed heteroplasmic flies possessing both endogenous mitochondrial DNA and foreign mitochondrial DNA by intra- and interspecific transplantation of germ plasm9. During the maintenance of these heteroplasmic lines, flies of D. melanogaster are produced that no longer possess their own mitochondrial DNA but retain the foreign mitochondrial DNA from D. mauritiana. These flies are fertile and the foreign mitochondrial DNA is stably maintained in their offspring. Here we report the complete replacement of endogenous mitochondrial DNA with that from another multicellular species. Molecular and genetic analysis of this replacement in Drosophila should provide new insight into the functional interaction between nuclear and organelle genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Francesco, L., Attardi, G. & Croce, C. M. Proc. natn. Acad. Sci U.S.A. 77, 4079–4083 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Giles, R. E., Stroynowski, I. & Wallace, D. C. Som. cell Genet. 6, 543–554 (1980).

    Article  CAS  Google Scholar 

  3. Hayashi, J.-I., Tagashira, Y., Yoshida, M. C., Ajiro, K. & Sekiguchi, T. Exp. cell Res. 147, 51–61 (1983).

    Article  CAS  Google Scholar 

  4. White, F. A. & Bunn, C. L. Mol. gen. Genet. 197, 453–460 (1984).

    Article  CAS  Google Scholar 

  5. Zuckerman, S. H., Solus, J. F., Gillespie, F. P. & Eisenstadt, J. M. Som. cell Genet. 10, 85–92 (1984).

    Article  CAS  Google Scholar 

  6. King, M. P. & Attardi, G. Cell 52, 811–819 (1988).

    Article  CAS  Google Scholar 

  7. Fox, T. D., Sanford, J. C. & McMullin, T. W. Proc. natn. Acad. Sci. U.S.A. 85, 7288–7292 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Johnston, S. A., Anziano, P. Q., Shark, K., Sanford, J. C. & Butow, R. A. Science 240, 1538–1541 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Matsuura, E. T., Chigusa, S. I. & Niki, Y. Genetics 122, 663–667 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lemeunier, F., David, J. R., Tsacas, L. & Ashburner, M. The Genetics and Biology of Drosophila (eds Ashburner, M, Carson, H. L. & Thompson J. N. Jr) Vol. 3e, 218–222 (Academic, London, 1986).

    Google Scholar 

  11. Mahowald, A. P. J. exp. Zool. 167, 237–262 (1962).

    Article  Google Scholar 

  12. Satta, Y., Ishiwa, H. & Chigusa, S. I. Molec. biol. Evol. 4, 638–650 (1987).

    CAS  PubMed  Google Scholar 

  13. Solignac, M., Monnerot, M. & Mounolou, J.-C. J. molec. Evol. 23, 31–40 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Kotylak, Z., Lazowska, J., Hawthorne, D. C. & Slonimski, P. P. Achievements and Perspectives of Mitochondria! Research Vol. II (eds Quagliariello, E., Slater, E. C., Palmieri, F., Saccone, C. & Kroon, A. M.) 1–20 (Elsevier, Amsterdam, 1985).

    Google Scholar 

  15. Wenzlau, J. M., Saldanha, R. J., Butow, R. A. & Perlman, P. S. Cell 56, 421–430 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niki, Y., Chigusa, S. & Matsuura, E. Complete replacement of mitochondrial DNA in Drosophila. Nature 341, 551–552 (1989). https://doi.org/10.1038/341551a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341551a0

  • Springer Nature Limited

This article is cited by

Navigation