Skip to main content

Advertisement

Log in

Disequilibrium silicate mineral textures: fractal and non-fractal features

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

IGNEOUS rocks formed from lava flows of the Archaean era (>2,700 million years ago) are often found to contain disequilibrium-textured crystals characterized by spherulitic, branching or dendritic morphologies that occur in layers near the flow surface. Well-known examples are the plagioclase spherulites of basalts and the platy and branching spinnifex-textured olivines and pyroxenes of komatiites1,2. Here we present evidence that, over a finite range of length scales, some disequilibrium textures are scale invariant. This observation implies that over this range of length scales their random patterns can be quantitatively characterized by a unique number, the fractal dimension3. We also demonstrate that some textures have a crossover from fractal to non-fractal behaviour. It is known that most disequilibrium crystals arise in part from rapid cooling and represent the case where the growth rates of the crystals are large compare to the diffusion rates in the silicate melt1,2,4. We therefore formulate a quantitative model for the growth that is based on a variant of diffusion-limited aggregation (DLA) 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lofgren, G. Am. J. Sci. 274, 243–273 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Donaldson, C. H. Contr. Miner. Petrol. 57, 187–213 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Mandelbrot, B. B. The Fractal Geometry of Nature (Freeman, New York, 1983).

    Book  Google Scholar 

  4. Keith, H. D. & Padden, F. J. Jr J. appl. Phys. 34, 2409–2421 (1963).

    Article  ADS  CAS  Google Scholar 

  5. Witten, T. A. & Sander, L. M. Phys. Rev. Lett. 47, 1400–1403 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Fowler, A. D., Jensen, L. S. & Peloquin, A. S. Can. Mineralogist 25, 275–289 (1987).

    CAS  Google Scholar 

  7. Stanley, H. W. Fractals and Multifractals: An Introduction (Oxford University Press, in the press).

  8. Witten, T. A. & Meakin, P. Phys. Rev. B28, 5632–5642 (1983).

    Article  ADS  Google Scholar 

  9. Nittmann, J. & Stanley, H. E. Nature 321, 663–668 (1986).

    Article  ADS  Google Scholar 

  10. Yang, C.-L., Chen, Z.-Y. & El-Sayed, M. A. J. phys. Chem. 91, 3002–3006 (1987).

    Article  CAS  Google Scholar 

  11. Collins, F. C. & Kimball, G. E. J. Colloid Sci. 4, 125–137 (1949).

    Article  Google Scholar 

  12. Rice, S. A. Diffusion-Limited Reactions (Elsevier, New York, 1985).

    Google Scholar 

  13. Daccord, G. Phys. Rev. A39, 1365–1368 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Donaldson, C. H. Lithos 8, 163–174 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Clark, A. H., Pearce, T. H., Roeer, P. L. & Wolfson, I. Am. Miner. 71, 734–741 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, A., Stanley, H. & Daccord, G. Disequilibrium silicate mineral textures: fractal and non-fractal features. Nature 341, 134–138 (1989). https://doi.org/10.1038/341134a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341134a0

  • Springer Nature Limited

This article is cited by

Navigation