Skip to main content
Log in

Eutectics and the formation of amorphous alloys

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SOLID amorphous alloys can be made by a wide variety of techniques1. Of these, rapid liquid quenching and solid-state amorphization (SSA) in annealed multilayers can be most readily analysed according to a condensed-phase equilibrium diagram for the alloy. Here we consider how the phase equilibria in eutectic systems are affected by the interaction of the liquid components. We use such considerations to show the link between two apparently distinct types of alloy system: one capable of exhibiting SSA, in which there are compounds and a deep metastable eutectic; the other not capable of SSA, but capable of glass formation by rapid liquid quenching, in which there is only a stable eutectic. In alloys of intermediate type we propose that there exists a novel transformation, the inverse eutectic transition, which is a special case of a peritectoid transformation (two solid phases transforming to a single solid phase on cooling) in which the product phase is amorphous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, W. L. Prog. Mater. Sci. 30, 81–134 (1986).

    Article  CAS  Google Scholar 

  2. Cohen, M. H. & Turnbull, D. Nature 189, 131–132 (1961).

    Article  ADS  CAS  Google Scholar 

  3. Klement, W., Willens, R. H. & Duwez, P. Nature 187, 869–870 (1960).

    Article  ADS  CAS  Google Scholar 

  4. Garrone, E. & Battezzati, L. Phil. Mag. B 52, 1033–1045 (1985).

    Article  CAS  Google Scholar 

  5. Clemens, B. M., Johnson, W. L. & Schwarz, R. B. J. Non-Cryst. Solids 61 & 62, 817–822 (1984).

    Article  Google Scholar 

  6. Cotts, E. J., Meng, W. J. & Johnson, W. L. Phys. Rev. Lett. 57, 2295–2298 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Evans, P. V., Garcia-Escorial, A., Donovan, P. E. & Greer, A. L. Mater. Res. Soc. Symp. Proc. 57, 234–253 (1987).

    Google Scholar 

  8. Greer, A. L. & Evans, P. V. in Principles of Solidification and Materials Processing (ed. Trivedi, R.) (Trans. Tech., Zurich, in the press).

  9. Perepezko, J. H. & Paik, J. S. J. Non-Cryst. Solids 61 & 62, 113–118 (1984).

    Article  Google Scholar 

  10. Kauzmann, W. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

  11. Sommer, F., Lee, J.-J. & Predel, B. Z. Metallk. 74, 100–104 (1983).

    CAS  Google Scholar 

  12. Greer, A. L. J. less-Common Met. 140, 327–334 (1988).

    Article  CAS  Google Scholar 

  13. Hansen, M. & Anderko, K. Constitution of Binary Alloys 633–634 (McGraw-Hill, New York, 1958).

    Google Scholar 

  14. Blatter, A. & von Allmen, M. Phys. Rev. Lett. 54, 2103–2106 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Chen, H. S. & Turnbull, D. J. chem. Phys. 44, 2560–2571 (1968).

    Article  ADS  Google Scholar 

  16. Altounian, Z., Tu Guo-hua & Strom-Olsen, J. J. appl. Phys. 54, 3111–3116 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Highmore, R., Greer, A. Eutectics and the formation of amorphous alloys. Nature 339, 363–365 (1989). https://doi.org/10.1038/339363a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339363a0

  • Springer Nature Limited

This article is cited by

Navigation