Skip to main content
Log in

Site-specific cleavage of single-stranded DNAs at unique sites by a copper-dependent redox reaction

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Metal ions play a crucial role not only in the formation and maintenance of nucleic acid structure, but also in important biochemical conversions of polynucleotides. Some aqueous metal ions, acting as general acid/base (or electrophilic/nucleophilic) catalysts, can induce site-specific cleavage of RNA1–6. DNA is not cleaved efficiently by the non-redox metal-induced mechanism7. However, DNA degradation by radicals formed in the metal-catalysed auto-oxidation of ascorbate (or other reducing agents) is well known8–11. In the past, the observed cleavage reactions have not been very specific. Here, we report a non-enzymatic cleavage of single-stranded DNA occurring at unique sites due to redox reactions involving copper. This could be considered a 'self-cleavage' reaction, by analogy with the lead-induced non-redox RNA cleavage reaction3–5. This site-specific cleavage of DNA, stimulated by ascorbate and hydrogen peroxide, is most efficient under physiological conditions, so this phenomenon may have biological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Werner, C., Krebs, B., Keith, G. & Dirheimer, G. Biochim. biophys. Acta 432, 161–175 (1976).

    Article  CAS  Google Scholar 

  2. Rordorf, B. F. & Kearns, D. R. Biopolymers 15, 1491–1504 (1976).

    Article  CAS  Google Scholar 

  3. Rubin, J. R. & Sundaralingam, M. J. Biomol. Struct. Dynam. 1, 639–646 (1983).

    Article  CAS  Google Scholar 

  4. Brown, R. S., Hingerty, B. E., Dewan, J. C. & Klug, A. Nature 303, 543–546 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Brown, R. S., Dewan, J. C. & Klug, A. Biochemistry 24, 4785–4801 (1985).

    Article  CAS  Google Scholar 

  6. Guerrier-Takada, C., Haydock, K., Allen, L. & Altman, S. Biochemistry 25, 1509–1515 (1986).

    Article  CAS  Google Scholar 

  7. Basile, L. A., Raphael, A. L. & Barton, J. K. J. Am. chem. Soc. 109, 7550–7551 (1987).

    Article  CAS  Google Scholar 

  8. Chiou, S.-H. J. Biochem. 94, 1259–1267 (1983).

    Article  CAS  Google Scholar 

  9. Chiou, S.-H. J. Biochem. 96, 1307–1310 (1984).

    Article  CAS  Google Scholar 

  10. Chiou, S.-H., Chang, W.-C., Jou, Y.-S., Chung, H.-M. M. & Lo, T.-B. J. Biochem. 98, 1723–1726 (1985).

    Article  CAS  Google Scholar 

  11. Hertzberg, R. P. & Dervan, P. B. Biochemistry 23, 3934–3945 (1984).

    Article  CAS  Google Scholar 

  12. Vlassov, V. V., Zarytova, V. F., Kutiavin, I. V., Mamaev, S. V. & Podyminogin, M. A. Nucleic Acids Res. 14, 4065–4076 (1986).

    Article  CAS  Google Scholar 

  13. Patton, J. R. & Chae, C.-B. Analyt. Biochem. 126, 231–234 (1982).

    Article  CAS  Google Scholar 

  14. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  15. Marshall, L. E., Graham, D. R., Reich, K. A. & Sigman, D. S. Biochemistry 20, 244–250 (1981).

    Article  CAS  Google Scholar 

  16. Sigman, D. S., Spassky, A., Rimsky, S. & Buc, H. Biopolymers 24, 183–197 (1985).

    Article  CAS  Google Scholar 

  17. Sigman, D. S. Acc. Chem. Res. 19, 180–186 (1986).

    Article  CAS  Google Scholar 

  18. Chen, C.-H. B. & Sigman, D. S. Proc. natn. Acad. Sci. U.S.A. 83, 7147–7151 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Goldstein, S. & Czapski, G. J. Am. chem. Soc. 108, 2244–2250 (1986).

    Article  CAS  Google Scholar 

  20. Drew, H. R. J. molec. Biol. 176, 535–557 (1984).

    Article  CAS  Google Scholar 

  21. James, B. R. & Williams, R. J. P. J. chem. Soc. 2007–2019 (1961).

    Article  CAS  Google Scholar 

  22. Wacker, W. E. C. & Vallee, B. L. J. biol. Chem. 234, 3257–3261 (1961).

    Google Scholar 

  23. Samuni, A., Chevion, M. & Czapski, G. J. biol. Chem. 256, 12632–12635 (1981).

    CAS  PubMed  Google Scholar 

  24. Rowley, D. A. & Halliwell, B. Archs Biochem. Biophys. 225, 279–284 (1983).

    Article  CAS  Google Scholar 

  25. Marx, G. & Chevion, M. Biochem. J. 236, 397–400 (1985).

    Article  Google Scholar 

  26. Morita, J., Ueda, K., Nanjo, S. & Komano, T. Nucleic Acids Res. 13, 449–458 (1985).

    Article  CAS  Google Scholar 

  27. Halliwell, B. & Gutteridge, J. M. C. Biochem. J. 219, 1–14 (1984).

    Article  CAS  Google Scholar 

  28. Weitberg, A. B. Mutat. Res. 191, 53–56 (1987).

    Article  CAS  Google Scholar 

  29. Sissoeff, I., Grisvard, J. & Guille, E. Prog. Biophys. molec. Biol. 31, 165–199 (1976).

    Article  CAS  Google Scholar 

  30. Murata, A., Suenaga, H., Hideshima, S., Tanaka, Y. & Kato, F. Agric. Biol. Chem. 50, 1481–1487 (1986).

    CAS  Google Scholar 

  31. Bram, S. et al. Nature 284, 629–631 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazakov, S., Astashkina, T., Mamaev, S. et al. Site-specific cleavage of single-stranded DNAs at unique sites by a copper-dependent redox reaction. Nature 335, 186–188 (1988). https://doi.org/10.1038/335186a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335186a0

  • Springer Nature Limited

This article is cited by

Navigation