Skip to main content
Log in

Entropy and enthalpy catastrophe as a stability limit for crystalline material

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The transition from a crystalline material with long-range order to a glass-like disordered structure has been observed in several metal alloys and minerals using experimental techniques such as solid-state reaction, mechanical alloying, pressure application, ion-beam mixing and hydriding1–3. In all these examples the vitrification occurs below the glass transition temperature, and because the glass can be thought of as a highly undercooled liquid, one may draw an analogy between the vitrification process and melting. The melting process is often viewed as a catastrophic instability of the crystal lattice4–6, although none of these theories predicts the melting temperature correctly. The transition from crystal to glass could also be triggered by some type of instability7; indeed, Kauzmann8 has argued that an undercooled liquid whose entropy falls below that of the crystalline phase must undergo massive freezing to a glass. Applying an 'inverse' Kauzmann argument to the problem of melting, an entropy catastrophe is predicted when the entropy of a superheated crystal exceeds that of the liquid phase. We propose that this temperature represents an ultimate stability limit for superheated or supersaturated crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, W. L. Prog. Mater. Sci. 30, 81–134 (1986).

    Article  CAS  Google Scholar 

  2. Mishima, O., Calvet, L. D. & Whalley, E. Nature 310, 393–395 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Richet, P. Nature 331, 56–58 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Lindemann, F. A. Z. Phys. 11, 609–615 (1910).

    CAS  Google Scholar 

  5. Cotterill, R. M. J., Jensen, E. J. & Kristensen, W. D. Phys. Lett. A44, 127–128 (1973).

    Article  CAS  Google Scholar 

  6. Gorecki, T. Z. Metallik. 65, 426–431 (1974).

    CAS  Google Scholar 

  7. Rehn, L. E., Okamoto, P. R., Pearson, J., Bhadra, R. & Grimsditch, M. Phys. Rev. Lett. 59, 2987–2990 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Kauzmann, W. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

  9. Daeges, J., Gleiter, H. & Perepezko, J. H. Phys. Lett. A119, 79–82 (1986).

    Article  CAS  Google Scholar 

  10. Cormia, R. L., Mackenzie, J. D. & Turnbull, D. J. appl. Phys. 34, 2245–2248 (1963).

    Article  ADS  CAS  Google Scholar 

  11. Uhlmann, D. R. J. Non-Cryst. Solids 41, 347–357 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Jung, J. & Franck, J. P. Jap. J. appl. Phys. 26-3, 399–400 (1987).

    Article  ADS  Google Scholar 

  13. Desai, P. D. Int. J. Thermophys. 8, 621–638 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Regnaut, C. & Bretonnet, J. T. J. Phys., Paris C8, 669–673 (1985).

    Google Scholar 

  15. Pochapsky, T. E. Acta metall. 1, 747–751 (1953).

    Article  CAS  Google Scholar 

  16. Hsieh, H. & Yip, S. Phys. Rev. Lett. 59, 2760–2763 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Kraftmaker, Ya. A. Soviet Phys. Solid St. 5, 696–697 (1963).

    Google Scholar 

  18. Kraftmaker, Ya. A. & Strelkov, P. G. Soviet Phys. Solid St. 4, 1662–1664 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fecht, H., Johnson, W. Entropy and enthalpy catastrophe as a stability limit for crystalline material. Nature 334, 50–51 (1988). https://doi.org/10.1038/334050a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334050a0

  • Springer Nature Limited

This article is cited by

Navigation