Skip to main content
Log in

Action principles in nature

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Physical theories have their most fundamental expression as action integrals. This suggests that the total action of the Universe is the most fundamental physical quantity, and hence finite. In this article it is argued that finite universal action implies that the Universe is spatially closed. Further, the possible spatial topologies, the types of matter that can dominate the early universe dynamics, and the form of any quadratic additions to the lagrangian of general relativity are constrained. Initial and final cosmological curvature singularities are required to avoid a universal action singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Planck, M. Scientific Autobiography and Other Papers pp. 48, 180 (Greenwood, New York, 1968).

    Google Scholar 

  2. Barrow, J. D. & Tipler, F. J. The Anthropic Cosmological Principle (Oxford University Press, 1986).

    Google Scholar 

  3. Dirac, P. A. M. in Selected Papers on Quantum Electrodynamics (ed. Schwinger, J.) 312–320 (Dover, 1958).

    Google Scholar 

  4. Ramond, P. Field Theory: A Modern Primer (Benjamin, New York, 1981).

    MATH  Google Scholar 

  5. Green, M. B., Schwarz, J. H. & Witten, E. Superstring Theory Vol. 1 (Cambridge University Press, 1987).

    MATH  Google Scholar 

  6. Jaffe, A. & Taubes, C. Vortices and Monopoles: the Structure of Static Gauge Theories (Birkhäuser, Boston, 1980).

    MATH  Google Scholar 

  7. Freed, D. S. & Uhlenbeck, K. Instantons and Four-Manifolds (Springer, Berlin, 1984).

    Book  Google Scholar 

  8. Coleman, S. in The Whys of Subnuclear Physics (ed. Zichichi, A.) 805–941 (Plenum, New York, 1979).

    Book  Google Scholar 

  9. DeWitt, B. S. in Relativity, Groups, and Topology (eds DeWitt, C. & DeWitt, B. S.) 587–820 (Gordon & Breach, New York, 1964).

    Google Scholar 

  10. York, J. M. Phys. Rev. Lett. 28, 1082–1084 (1972).

    Article  ADS  Google Scholar 

  11. Gibbons, G. W. & Hawking, S. W. Phys. Rev. D15, 2752–2756 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Hawking, S. W. in General Relativity: An Einstein Centenary Survey (eds Hawking, S. W. & Israel, W.) 746–789 (Cambridge University Press, 1979).

    MATH  Google Scholar 

  13. Hawking, S. W. & Ellis, G. F. R. The Large-scale Structure of Space-time (Cambridge University Press, 1973).

    Book  Google Scholar 

  14. Narlikar, J. V. Astrophys. Astr. 5, 67–78 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Gott, J. R. Nature 295, 304–306 (1982).

    Article  ADS  Google Scholar 

  16. Guth, A. Phys. Rev. D23, 347–356 (1981).

    ADS  CAS  Google Scholar 

  17. Linde, A. D. Phys. Lett. 175B, 395–400 (1986).

    Article  CAS  Google Scholar 

  18. Barrow, J. D., Galloway, G. J. & Tipler, F. J. Mon. Not. R. astr. Soc. 223, 835–844 (1986).

    Article  ADS  Google Scholar 

  19. Tipler, F. J. in Proc. 13th Texas Symposium on Relativistic Astrophysics (ed. Ulmer, M. P.) (World Scientific, Singapore, 1987).

    Google Scholar 

  20. Tipler, F. J. in Proc. 26th Liège Astrophysical Colloquium (ed. Demaret, J.) (Liège Observatory Press, Liège, 1987).

    Google Scholar 

  21. Barrow, J. D. & Matzner, R. A. Phys. Rev. D21, 336–340 (1980).

    ADS  MathSciNet  Google Scholar 

  22. Tipler, F. J., Clarke, C. J. S. & Ellis, G. F. R. in General Relativity and Gravitation Vol. 2 (ed. Held, A.) 97–206 (Plenum, New York, 1980).

    Google Scholar 

  23. Christodoulou, D. Commun. math. Phys. 105, 337–361 (1986).

    Article  ADS  Google Scholar 

  24. Yodzis, P., Seifert, H. J. & Müller zum Hagen, H. Commun. math. Phys. 37, 29–40 (1974).

    Article  ADS  Google Scholar 

  25. Weinberg, S. Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

  26. Gurevich, L. E., Finkelstein, A. M. & Ruban, V. A. Astrophys. Space Sci. 22, 231–242 (1973).

    Article  ADS  Google Scholar 

  27. Barrow, J. D. Nature 272, 211–215 (1978).

    Article  ADS  Google Scholar 

  28. Kantowski, R. & Sachs, R. K. J. Math. Phys. 7, 443–446 (1966).

    Article  ADS  Google Scholar 

  29. Brill, D. R. Phys. Rev. 133, 845–848 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  30. Perry, M. J. Phys. Lett. 71B, 234–236 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Bonnor, W. Mon. Not. R. astr. Soc. 167, 55–65 (1974).

    Article  ADS  Google Scholar 

  32. Szekeres, P. Commun. math. Phys. 41, 55–64 (1975).

    Article  ADS  Google Scholar 

  33. Bonnor, W. B. & Tomimura, N. Mon. Not. R. astr. Soc. 175, 85–94 (1976).

    Article  ADS  Google Scholar 

  34. Belinskii, V. A. Soc. Phys. JETP 50, 623–631 (1979).

    ADS  Google Scholar 

  35. Barrow, J. D. & Ottewill, A. J. Phys. A16, 2757–2775 (1983).

    ADS  MathSciNet  Google Scholar 

  36. Barrow, J. J. & Tipler, F. J. Mon. Not. R. astr. Soc. 216, 395–402 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrow, J., Tipler, F. Action principles in nature. Nature 331, 31–34 (1988). https://doi.org/10.1038/331031a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331031a0

  • Springer Nature Limited

This article is cited by

Navigation