Skip to main content
Log in

A possible biochemical missing link among archaebacteria

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Until recently all archaebacteria isolated conformed to one of three basic phenotypes: they were either methanogens, extreme halophiles, or ('sulphur-dependent') extreme thermophiles1. However, a novel phenotype, that fits none of these categories, has recently been described2. The organism, strain VC-16 (tentatively called "Archaeoglobus fulgidus") reduces sulphate—the only archaebacterium so far known to do so—and makes very small quantities of methane, although it lacks some of the cofactors normally associated with methanogenesis2. These characteristics suggest that strain VC-16 might represent a transition form between an anaerobic thermophilic sulphur-based type of metabolism (which seems to be the ancestral metabolism for archaebacteria3,4) and methanogenesis (which somehow then derives from it). We here show that the lineage represented by strain VC-16 arises from the archaebacterial tree precisely where such an interpretation would predict that it would, between the Methanococcus lineage (which is the deepest of the methanogen branchings) and that of Thermococcus (the deepest of all branchings on the methanogen side of the tree).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. Jones, W. J., Nagle, D. P., Jr & Whitman, W. B. Microbiol Rev. 51, 135–177 (1987). 2. Stetter, K. O., Lauerer, G., Thomm, M. & Neuner, A. Science 236, 822–823 (1987). 3. Woese, C. R. & Olsen, G. J. Syst. appl. Microbiol. 7, 161–177 (1986). 4. Woese, C. R. Microbiol. Rev. 51, 221–271 (1987). 5. Woese, C. R., Stackebrandt, E. & Ludwig, W. Molec. EvoL 21, 305–316 (1985). 6. Woese, C. R., Gutell, R., Gupta, R. & Noller, H. F. Microbiol. Rev. 47, 621–669 (1983). 7. Jarsch, M. & Bocke, A. Syst. appl. Microbiol. 6, 54–59 (1985). 8. Lechner, K., Wich, G. & Bock, A. Syst. appl Microbiol. 6, 157–163 (1985). 9. Yang, D., Kaine, B. P. & Woese, C. R. Syst. appl. Microbiol. 6, 251–256 (1985). 10. Gupta, R., Lanter, J. & Woese, C. R. Science 221, 56–659 (1983). 11. Olsen, G. J. et al J. molec. EvoL 22, 301–307 (1985). 12. Leinfelder, W., Jarsch, M. & Bock, A. Syst. appl. Microbiol. 6, 164–170 (1985). 13. Jukes, T. H. & Cantor, C. R. in Mammalian Protein Metabolism (ed. Munro, H. N.) 21–132 (Academic, New York, 1969). 14. Achenbach–Richter, L., Gupta, R., Stetter, K. O. & Woese, C. R. Syst. appl Microbiol 9, 34–39 (1987). 15. Leder, P., Tiemeier, D. & Enquist, L. Science 1%, 175–177 (1977). 16. Messing, J. Meth. Enzym. 101, 20–78 (1983). 17. Biggin, M. D., Gibson, T. J. & Hong, G. F. Proc. natn. Acad. Sci. U.S.A. 80,3963–3965 (1983). 18. Yang, D. C., Kaine, B. & Woese, C. R. Syst. appl. Microbiol. 6, 251–256 (1985). 19. De Soete, G. Psychometrika 48, 621–626 (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achenbach-Richter, L., Stetter, K. & Woese, C. A possible biochemical missing link among archaebacteria. Nature 327, 348–349 (1987). https://doi.org/10.1038/327348a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/327348a0

  • Springer Nature Limited

This article is cited by

Navigation