Skip to main content
Log in

A new type of glutamate receptor linked to inositol phospholipid metabolism

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Receptors for excitatory amino acids in the mammalian central nervous system are classified into three major subtypes1,2, ones which prefer N-methyl-D-aspartate (NMDA), quisqualate (QA), or kainate (KA) as type agonists respectively. These receptors are considered to mediate fast postsynaptic potentials by activating ion channels directly3–5 (ionotropic type6). Recently it was reported that exposure of mammalian brain cells to glutamate (Glu) or its analogues causes enhanced hydrolysis of inositol phospholipids7,8, but it is not clear whether the enhanced hydrolysis is the cause or effect of physiological responses. Membrane depolarization or Ca2+ influx, which can result from Glu receptor activation9,10, can induce enhanced hydrolysis of inositol phospholipids11. We have characterized the functional properties of two types of excitatory amino-acid responses, those activated by QA (or Glu) and those activated by KA, induced in Xenopus oocytes injected with rat-brain messenger RNA12. We report evidence for a new type of Glu receptor, which prefers Q A as agonist, and which directly activates inositol phospholipid metabolism through interaction with GTP-binding regulatory proteins (Gi or Go13,14), leading to the formation of inositol 1,4,5-trisphosphate (InsP3) and mobilization of intracellular Ca2+. This QA/Glu reaction is inhibited by islet-activating protein (IAP, pertussis toxin15), but was not blocked by Joro spider toxin (JSTX)16, a specific blocker of traditional ionotropic QA/Glu receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. Toxicol. 21, 165–204 (1981).

    Article  CAS  Google Scholar 

  2. Fagg, G. E. Trends Neurosci. 8, 207–210 (1985).

    Article  CAS  Google Scholar 

  3. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Cull-Candy, S. G. & Ogden, D. C. Proc. R. Soc. B224, 367–373 (1985).

    ADS  CAS  Google Scholar 

  5. Kiskin, N. I., Krishtal, O. A. & Tsyndrenko, A. Ya. Neurosci. Lett. 63, 225–230 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Eccles, J. C. & McGeer, P. L. Trends Neurosci. 2, 39–40 (1979).

    Article  Google Scholar 

  7. Sladeczek, F., Pin, J. P., Recasens, M., Bockaert, J. & Weiss, S. Nature 317, 717–719 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Nicoletti, F. et al. J. Neurochem. 46, 40–46 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Retz, K. C. & Coyle, J. T. Neuropharmacology 23, 89–94 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. Nature 321, 519–522 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kendall, D. A. & Nahorski, S. R. J. Neurochem. 42, 1388–1394 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Gundersen, C. B., Miledi, R. & Parker, I. Proc. R. Soc. B221, 127–143 (1984).

    ADS  CAS  Google Scholar 

  13. Sternweis, P. C. & Robishaw, J. D. J. biol. Chem. 259, 13806–13813 (1984).

    CAS  PubMed  Google Scholar 

  14. Neer, E. J., Lok, J. M. & Wolf, L. G. J. biol. Chem. 259, 14222–14229 (1984).

    CAS  PubMed  Google Scholar 

  15. Ui, M. Trends pharmac. Sci. 5, 277–279 (1984).

    Article  CAS  Google Scholar 

  16. Abe, T., Kawai, N. & Miwa, A. J. Physiol., Lond. 339, 243–252 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirono, C., Ito, I. & Sugiyama, H. J. Physiol., Lond. 382, 523–535 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berridge, M. J. & Irvine, R. F. Nature 312, 315–321 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Oron, Y., Dascal, N., Nadler, E. & Lupu, M. Nature 313, 141–143 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Saito, M., Kawai, N., Miwa, A., Pan-Hou, H. & Yoshioka, M. Brain Res. 346, 397–399 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Sugiyama, H., Hisanaga, Y. & Hirono, C. Brain Res. 338, 346–350 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Hirono, C. et al. Brain Res. 359, 57–64 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiyama, H., Ito, I. & Hirono, C. A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325, 531–533 (1987). https://doi.org/10.1038/325531a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325531a0

  • Springer Nature Limited

This article is cited by

Navigation