Skip to main content
Log in

Glycine potentiates the NMDA response in cultured mouse brain neurons

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Transmitters mediating 'fast' synaptic processes in the vertebrate central nervous system are commonly placed in two separate categories that are believed to exhibit no interaction at the receptor level. The 'inhibitory transmitters' (such as glycine and GABA) are considered to act only on receptors mediating a chloride conductance increase, whereas 'excitatory transmitters' (such as L-glutamate) are considered to activate receptors mediating a cationic conductance increase1. The best known excitatory receptor is that specifically activated by N-methyl-D-aspartate (NMDA)2 which has recently been characterized at the single channel level3–5. The response activated by NMDA agonists is unique in that it exhibits a voltage-dependent Mg block3,6. We report here that this response exhibits another remarkable property: it is dramatically potentiated by glycine. This potentiation is not mediated by the inhibitory strychnine-sensitive glycine receptor7,8, and is detected at a glycine concentration as low as 10 nM. The potentiation can be observed in outside-out patches as an increase in the frequency of opening of the channels activated by NMDA agonists. Thus, in addition to its role as an inhibitory transmitter, glycine may facilitate excitatory transmission in the brain through an allosteric9 activation of the NMDA receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iversen, L. L. Proc. R. Soc. B221, 245–260 (1984).

    ADS  Google Scholar 

  2. Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. 21, 165–205 (1981).

    Article  CAS  Google Scholar 

  3. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Cull-Candy, S. G. & Usowicz, M. M. Nature 325, 525–528 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Jahr, C. E. & Stevens, C. F. Nature 325, 522–525 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261–263 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Curtis, D. R., Hösli, L. & Johnston, G. A. R. Exp. Brain Res. 6, 1–18 (1968).

    Article  CAS  Google Scholar 

  8. Graham, D., Pfeiffer, F., Simler, R. & Betz, H. Biochemistry 24, 990–994 (1985).

    Article  CAS  Google Scholar 

  9. Monod, J., Wyman, J. & Changeux, J. P. J. molec. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  10. Werman, R., Davidoff, R. A. & Aprison, M. H. Nature 214, 681–683 (1967).

    Article  ADS  CAS  Google Scholar 

  11. Hamill, O. P., Bormann, J. & Sakmann, B. Nature 305, 805–807 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Kiskin, N. I., Krishtal, O. A. & Tsyndrenko, A. Ya. Neurosci. Lett. 63, 225–230 (1986).

    Article  CAS  Google Scholar 

  13. Ferraro, T. N. & Hare, T. A. Brain Res. 338, 53–60 (1985).

    Article  CAS  Google Scholar 

  14. Sigvardt, K. A., Grillner, S., Wallen, P. & Van Dongen, P. A. M. Brain Res. 336, 390–395 (1985).

    Article  CAS  Google Scholar 

  15. Herrling, P. L., Morris, R. & Salt, T. E. J. Physiol., Lond. 339, 207–222 (1983).

    Article  CAS  Google Scholar 

  16. Fagg, G. E. Trends Neurosci. 8, 207–210 (1985).

    Article  CAS  Google Scholar 

  17. Nakajima, Y. J. comp. Neurol. 156, 375–402 (1974).

    Article  Google Scholar 

  18. Choi, D. W., Farb, D. H. & Fischbach, G. D. Nature 269, 342–344 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Study, R. E. & Barker, J. L. Proc. natn. Acad. Sci. U.S.A. 78, 7180–7184 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Bormann, J. & Sakmann, B. IUPHAR 9th int. Congr. Pharmac. Abstr. S13–14 (Macmillan, London, 1984).

    Google Scholar 

  21. Haefely, W. E., Kyburz, E., Gerecke, M. & Möhler, H. Adv. Drug. Res. 14, 165–322 (1985).

    CAS  Google Scholar 

  22. Ransom, B. R., Neale, E., Henkart, M., Bullock, P. N. & Nelson, P. G. J. Neurophysiol. 40, 1132–1150 (1977).

    Article  CAS  Google Scholar 

  23. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  24. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Johnson, J. & Ascher, P. Soc. Neurosci. Abstr. 12, 58 (1986).

    Google Scholar 

  26. Vyklicky, L. et al. Brain Res. 363, 148–151 (1986).

    Article  CAS  Google Scholar 

  27. Ascher, P., Nowak, L. & Kehoe, J. S. in Ion channels in Neural Membranes (eds Ritchie, J. M., Keynes, R. D. & Bolis, L.) 283–295 (Liss, New York, 1986).

    Google Scholar 

  28. Nelson, P. G., Ransom, B. R., Henkart, M. & Bullock, P. N. J. Neurophysiol. 40, 1178–1187 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, J., Ascher, P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531 (1987). https://doi.org/10.1038/325529a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325529a0

  • Springer Nature Limited

This article is cited by

Navigation