Skip to main content
Log in

Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

In the mammalian central nervous system amino acids such as L-glutamate and L-aspartate are thought to act as fast synaptic transmitters1,2. It has been suggested that at least three pharmacologically-distinguishable types of glutamate receptor occur in central neurons and that these are selectively activated by the glutamate analogues N-methyl-D-aspartate (NMDA), quisqualate and kainate3–5. These three receptor types would be expected to open ion channels with different conductances. Hence if agonists produce similar channel conductances this would suggest they are acting on the same receptor6,7. Another possibility is suggested by experiments on spinal neurons8, where GABA (γ-amino butyric acid) and glycine appear to open different sub-conductance levels of one class of channel while acting on different receptors. By analogy, several types of glutamate receptor could also be linked to a single type of channel with several sub-conductance states. We have examined these possibilities in cerebellar neurons by analysing the single-channel currents9 activated by L-glutamate, L-aspartate, NMDA, quisqualate and kainate in excised membrane patches. All of these agonists are capable of opening channels with at least five different conductance levels, the largest being about 45–50 pS. NMDA predominantly activated conductance levels above 30 pS while quisqualate and kainate mainly activated ones below 20 pS. The presence of clear transitions between levels favours the idea that the five main levels are all sub-states of the same type of channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curtis, D. R. & Johnston, G. A. R. Ergebn. Physiol. 69, 97–188 (1974).

    CAS  PubMed  Google Scholar 

  2. Krnjevic, K. Physiol. Rev. 54, 418–540 (1974).

    Article  CAS  Google Scholar 

  3. Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. Toxicol. 21, 165–204 (1981).

    Article  CAS  Google Scholar 

  4. Foster, A. C. & Fagg, G. E. Brain Res. Rev. 7, 103–164 (1984).

    Article  CAS  Google Scholar 

  5. Mayer, M. L. & Westbrook, G. L. J. Physiol., Lond. 384, 29–53 (1984).

    Article  Google Scholar 

  6. Cull-Candy, S. G., Miledi, R. & Parker, I. J. Physiol., Lond. 321, 195–210 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gardner, P., Ogden, D. C. & Colquhoun, D. Nature 309, 160–162 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Hamill, O. P., Bormann, J. & Sakmann, B. Nature 305, 805–808 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  10. Moonen, G., Neale, E. A., Macdonald, R. L., Warren, G. & Nelson, P. G. Devl Brain Res. 5, 59–73 (1982).

    Article  Google Scholar 

  11. Weber, A. & Schachner, M. Brain Res. 311, 119–130 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Gruol, D. L. Brain Res. 263, 223–241 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Cull-Candy, S. G. & Usowicz, M. M. Brain Res. (in the press).

  14. Crepel, F., Dupont, J.-L. & Gardette, R. Brain Res. 279, 311–315 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Cull-Candy, S. G. & Ogden, D. C. Proc. R. Soc. B224, 367–373 (1985).

    ADS  Google Scholar 

  17. Katz, B. & Miledi, R. J. Physiol., Lond. 224, 665–699 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–691 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ascher, P., Nowak, L. & Kehoe, J. S. in Ion Channels in Neural Membranes (eds Ritchie, J. M., Keynes, R. D. & Bolis, L.) 823–295 (Liss, New York, 1986).

    Google Scholar 

  20. Ishida, A. T. & Neyton, J. Proc. natn. Acad. Sci. U.S.A. 82, 1837–1841 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Hamill, O. P. & Sakmann, B. Nature 294, 462–464 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Trautmann, A. Nature 298, 272–275 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Läuger, P. Biophys. J. 47, 581–590 (1985).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. Nature 321, 519–522 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Ascher, P. & Nowak, L. J. Physiol., Lond. 377, 35P (1986).

    Google Scholar 

  26. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 261–263 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Colquhoun, D. & Sigworth, F. J. in Single Channel Recording (eds Sakmann, B. & Neher, E.) 191–264 (Plenum, New York, 1983).

    Book  Google Scholar 

  28. Cull-Candy, S. G. & Ogden, D. C. in Ion Channels in Neural Membranes (eds Ritchie, J. M., Keynes, R. D. & Bolis, L.) 297–308 (Liss, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cull-Candy, S., Usowicz, M. Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325, 525–528 (1987). https://doi.org/10.1038/325525a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325525a0

  • Springer Nature Limited

This article is cited by

Navigation