Skip to main content
Log in

Summation of GABA- and Glutamate-Mediated Ion Currents in Isolated Rat Cerebral Cortex Neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Patch clamp experiments in the whole cell configuration were performed on isolated rat prefrontal cortex neurons to study the summation of ion currents evoked by application of glutamate and GABA. Ion currents were recorded using two different pipette solutions, based on cesium chloride and fluoride. In recordings made using the cesium chloride-based solution, the peak amplitude of the current evoked by simultaneous application of GABA and glutamate (each at 200 μM) coincided with the peak amplitude of the current evoked by application of GABA alone, and was significantly smaller than the arithmetic sum of the responses to application of the two neurotransmitters individually. When the pipette solution based on cesium fluoride was used, the response to simultaneous application of glutamate and GABA was essentially the same as the arithmetic sum of the individual responses. On exposure to these neurotransmitters at saturating concentrations (5 mM), the response recorded to simultaneous application was significantly smaller than the response to application of GABA alone. These results suggest that there is a mechanism of interaction between GABAA and ionotropic glutamate receptors (AMPA and kainate). On simultaneous application of glutamate and GABA, activation of GABAA receptors evidently has a greater influence on glutamate receptors than activation of glutamate receptors of GABAA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Amakhin and N. P. Veselkin, “Interaction of the effects of the neurotransmitters glycine and GABA in the central nervous system,” Tsitologiya, 54, No. 6, 469–477 (2012).

    CAS  Google Scholar 

  2. D. V. Amakhin and N. P. Veselkin, “Mechanisms of interaction of GABA- and glycine-mediated responses of frog spinal cord neurons,” Ros. Fiziol. Zh., 97, No. 10, 1025–1041 (2011).

    CAS  Google Scholar 

  3. D. V. Amakhin and N. P. Veselkin, “Characteristics and interaction of GABAergic and glycinergic processes in frog spinal cord neurons,” Ros. Fiziol. Zh., 95, No. 4, 313–323 (2009).

    CAS  Google Scholar 

  4. N. P. Veselkin and Yu. V. Natochin, “Principles of the organization and evolution of function-regulating systems,” Zh. Evolyuts. Biokhim. Fiziol., 46, No. 6, 495–503 (2010).

    CAS  Google Scholar 

  5. K. V. Baev, K. I. Rusin, and B. V. Safronov, “Primary receptor for inhibitory transmitters in lamprey spinal cord neurons,” Neuroscience, 46, No. 4, 931–941 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. C. Barajas-Lopez, R. Espinosa-Luna, and Y. Zhu, “Functional interactions between nicotinic and P2X channels in short-term cultures of guinea-pig submucosal neurons,” J. Physiol., 513, No. 3, 671–683 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. J. Q. Beltran and R. Gutierrez, “Co-release of glutamate and GABA from single, identified mossy fiber giant boutons,” 590, No. 19, 47898–4800 J. Physiol., (2012).

    Article  Google Scholar 

  8. L. Bertollini, G. Biella, E. Wanke, et al., “Fluoride reversibly blocks HVA calcium current in mammalian thalamic neurons,” Neuroreport, 5, No. 5, 553–556 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. F. Boue-Grabot, C. Barajas-Lopez, Y. Chafke, et al., “Intracellular cross talk and physical interaction between two classes of neurotransmitter-gated channels,” J. Neurosci., 23, No. 4, 1246–1253 (2003).

    CAS  PubMed  Google Scholar 

  10. X. B. Gao, G. Chen, and A. N. van den Pol, “GABA-dependent firing of glutamate-evoked action potentials at AMPA/kainate receptors in developing hypothalamic neurons,” J. Neurophysiol., 79, No. 2, 716–726 (1998).

    CAS  PubMed  Google Scholar 

  11. F. Grassi, “Cl(–)-mediated interaction between GABA and glycine currents in cultured rat hippocampal neurons,” Brain Res., 594, No. 1, 115–123 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. U. Karlson, M. Druzin, and S. Johansson, “Cl(–) concentration changes and desensitization of GABA(A) and glycine receptors,” J. Gen. Physiol., 138, No. 6, 609–626 (2011).

    Article  Google Scholar 

  13. B. S. Khakh, X. Zhou, J. Sydes, et al., “State-dependent cross-inhibition between transmitter-gated cation channels,” Nature, 406, No. 6794, 405–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Y. A. Kuryshev, A. P. Naumov, P. V. Avdonin, and G. N. Mozhayeva, “Evidence for involvement of a GTP-binding protein in activation of Ca2+ influx by epidermal growth factor in A431 cells: effects of fluoride and bacterial toxins,” Cell Signal, 5, No. 5, 555–564 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Li, L. J. Wu, P. Legendre, and T. L. Xu, “Asymmetric cross-inhibition between GABAA and glycine receptors in rat spinal dorsal horn neurons,” J. Biol. Chem., 278, No. 40, 38,637–38,645 (2003).

    Article  CAS  Google Scholar 

  16. Y. Li and T. L. Xu, “State-dependent cross-inhibition between anionic GABA(A) and glycine ionotropic receptors in rat hippocampal CA1 neurons,” Neuroreport, 13, No. 2, 223–226 (2002).

    Article  PubMed  Google Scholar 

  17. T. Narahashi, X. Zhao, T. Ikeda, et al., “Glutamate-activated chloride channels: Unique fipronil targets present in insects but not in mammals,” Pestic. Biochem. Physiol., 97, No. 2, 149–152 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. J. Noh, R. P. Seal, J. A. Garver, et al., “Glutamate co-release at GABA/glycinergic synapses is crucial for the refinement of an inhibitory map,” Nat. Neurosci., 13, No. 2, 232–238 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. A. S. Piper and R. J. Docherty, “One-way cross-desensitization between P2X purinoceptors and vanilloid receptors in adult rat dorsal root ganglion neurones,” J. Physiol., 523, No. 3, 685–696 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. A. Poleg-Polsky and J. S. Diamond, “Imperfect space clamp permits electrotonic interactions between inhibitory and excitatory synaptic conductances, distorting voltage clamp recordings,” PLoS One, 6, No. 4, e19463 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. M. Russier, I. L. Kopysova, N. Ankri, et al., “GABA and glycine corelease optimizes functional inhibition in rat brainstem motoneurons in vitro,” J. Physiol., 541, No. 1, 123–137 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. N. E. Schwartz and S. Alford, “Physiological activation of presynaptic metabotropic glutamate receptors increases intracellular calcium and glutamate release,” J. Neurophysiol., 84, No. 1, 415–427 (2000).

    CAS  PubMed  Google Scholar 

  23. R. P. Seal and R. H. Edwards, “Functional implications of neurotransmitter co-release: glutamate and GABA share the load,” Curr. Opin. Pharmacol., 6, No. 1, 114–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. T. J. Searl and E. M. Silinsky, “Cross-talk between apparently independent receptors,” J. Physiol., 513, No. 3, 629–630 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. A. N. Shrivastava, A. Triller, and W. Sieghart, “GABA(A) receptors: postsynaptic co-localization and cross-talk with other receptors,” Front. Cell. Neurosci., 5, No. 7, (2011).

  26. E. Sokolova, A. Nistri, and R. Giniatullin, “Negative cross talk between anionic GABAA and cationic P2X receptors of rat dorsal root ganglion neurons,” J. Neurosci., 21, No. 14, 4958–4968 (2001).

    CAS  PubMed  Google Scholar 

  27. C. H. Song, X. W. Chen, J. X. Xia, et al., “Modulatory effects of hypocretin-1/orexin-A with glutamate and gamma-aminobutyric acid on freshly isolated pyramidal neurons from the rat prefrontal cortex,” Neurosci. Lett., 399, No. 1–2, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. K. J. Staley and I. Mody, “Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance,” J. Neurophysiol., 68, No. 1, 197–212 (1992).

    CAS  PubMed  Google Scholar 

  29. E. Toulme, D. Blais, C. Leger, et al., “An intracellular motif of P2X(3) receptors is required for functional cross-talk with GABA(A) receptors in nociceptive DRG neurons,” J. Neurochem., 102, No. 4, 1357–1368 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. P. Q. Trombley, B. J. Hill, and M. S. Horning, “Interactions between GABA and glycine at inhibitory amino acid receptors on rat olfactory bulb neurons,” J. Neurophysiol., 82, No. 6, 3417–3422 (1999).

    CAS  PubMed  Google Scholar 

  31. G. Vargas, T. Y. Yeh, D. K. Blumenthal, and M. T. Lucero, “Common components of patch-clamp internal recording solutions can significantly affect protein kinase A activity,” Brain Res., 828, No. 1–2, 169–173 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. V. S. Vorobjev, I. N. Sharonova, and H. L. Haas, “A simple perfusion system for patch-clamp studies,” J. Neurosci. Meth., 68, No. 2, 303–307 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Amakhin.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 98, No. 12, pp. 1490–1506, December, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amakhin, D.V., Popov, V.A., Malkiel’, A.I. et al. Summation of GABA- and Glutamate-Mediated Ion Currents in Isolated Rat Cerebral Cortex Neurons. Neurosci Behav Physi 44, 828–838 (2014). https://doi.org/10.1007/s11055-014-9990-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9990-6

Keywords

Navigation