Skip to main content
Log in

Weakening of rock salt by water during long-term creep

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The rheological properties of rock salt are of fundamental importance in predicting the long-term evolution of salt-based radioactive waste repositories and strategic storage caverns, and in modelling the formation of salt diapirs and associated oil traps1,2. The short-term, high-stress rheology of rock salt is well known from laboratory experiments; however, extrapolation to appropriately low stresses fails to predict the rapid flow seen in certain natural structures. Furthermore, experiments have failed to reproduce the recrystallized microstructure of naturally deformed salt. Here we report experiments indicating that the above discrepancies can be explained by taking into account the influence of trace amounts of brine. Trace brine is always present in natural salt but sometimes escapes during experiments. Our tests on dry dilated salt show more or less conventional dislocation creep behaviour, but brine-bearing samples show marked weakening at low strain rates. This is associated with dynamic recrystallization and a change of deformation mechanism to solution transfer creep. Because natural rock salt always contains some brine, these results cast substantial doubt on the validity of presently accepted dislocation creep laws for predicting the long-term rheological behaviour of salt in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carter, N. L. & Hansen, F. D. Tectonophysics 92, 275–333 (1983).

    Article  ADS  Google Scholar 

  2. Jackson, M. & Talbot, C. J. Bull. geol. Soc. Am. 97, 305–323 (1986).

    Article  Google Scholar 

  3. Langer, M. In Proc. 1st Conf. on the Mechanical Behaviour of Salt (eds Hardy, H. R. & Langer, M.) 201–240 (Trans-Tech, Clausthel-Zellerfeld, 1984).

    Google Scholar 

  4. Herrmann, W., Wawersik, W. R. & Lauson, H. S. Sandia natn. Lab. Rep. No. SAND80-2712 (1980).

  5. Wawersik, W. R., Herman, W., Montgomery, S. T. & Lauson, S. in Proc. int. Symp. Rock Mechanics related to Caverns and Pressure Shafts (ed. Wittke, W.) 1345–1356 (Balkema, Amsterdam, 1982).

    Google Scholar 

  6. Skrotzki, W. & Welch, P. Tectonophysics 99, 47–61 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Carter, N. L., Hansen, F. D. & Senseny, P. E. J. geophys. Res. 87, 9289–9300 (1982).

    Article  ADS  Google Scholar 

  8. Spiers, C. J., Urai, J. L., Lister, G. S., Boland, J. N. & Zwart, H. J. in Nuclear Science and Technology (Office for Official Publs. of the European Communities, Luxembourg).

  9. Urai, J. L., Spiers, C. J., Liezenberg, J. L., Franssen, R. C. & Peach, C. J. Geol. Minb. (in the press).

  10. Müller, H. G. Z. Phys. 96, 279–327 (1935).

    Article  ADS  Google Scholar 

  11. Friedman, M., Dula, W. F., Gangi, A. F. & Gazonas, G. A. in Proc. 1st Conf. on the Mechanical Behaviour of Salt (eds Hardy, H. R. & Langer, M.) 19–36 (Trans-Tech, Clausthel-Zellerfeld, 1984).

    Google Scholar 

  12. Guillope, M. & Poirier, J. P. J. geophys. Res. 84, 5557–5567 (1979).

    Article  ADS  Google Scholar 

  13. Talbot, C. J. & Rogers, E. A. Science 208–395 (1980).

  14. Talbot, C. J. Spec. Pap. geol. Soc. Am. 9, 173–184 (1981).

    Article  Google Scholar 

  15. Wenkert, D. D. Geophys. Res. Lett. 6, 523–526 (1979).

    Article  ADS  Google Scholar 

  16. Roedder, E. A. Miner. 69, 413–439 (1984).

    CAS  Google Scholar 

  17. Urai, J. L. Tectonophysics 96, 125–157 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Raj, R. J. geophys. Res. 87, 4731–4739 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Lehner, F. K. & Bataille, J. Pure appl. Geophys. 122, 53–85 (1984).

    Article  ADS  Google Scholar 

  20. Raj, R. & Ashby, M. F. Metall. Trans. 2, 1113–1127 (1971).

    Article  Google Scholar 

  21. Ruhenbeck, C. Z. Physik. 207, 446–469 (1967).

    Article  ADS  Google Scholar 

  22. Green, A. K. & Bauser, E. J. appl. Phys. 39, 2769–2779 (1968).

    Article  ADS  CAS  Google Scholar 

  23. Jockwer, N. thesis, Tech. Univ. Clausthal (1981).

  24. Spiers, C. J., Urai, J. L. & Lister, G. S. in Proc. 2nd Conf. Mechanical Behaviour of Salt Hannover (in the press).

  25. Heard, H. C. Am. geophys. Un. Geophys. Monogr. 16, 191–209 (1972).

    Google Scholar 

  26. Urai, J. L., Means, W. D. & Lister, G. S. Am. geophys. Un. Geophys. Monogr. 36, 161–199 (1986).

    Google Scholar 

  27. Urai, J. L. Tectonophysics 120, 285–317 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Albrecht, H. & Hunsche, U. Fortschr. Miner. 58, 212–247 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urai, J., Spiers, C., Zwart, H. et al. Weakening of rock salt by water during long-term creep. Nature 324, 554–557 (1986). https://doi.org/10.1038/324554a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324554a0

  • Springer Nature Limited

This article is cited by

Navigation