Skip to main content
Log in

Predicting aqueous aluminium concentrations in natural waters

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Aluminium is a pH-sensitive element that can cause acute toxicity symptoms in some organisms at aqueous activities of 10 µM or less1–3. Scientists working on agricultural systems have long been concerned with the deleterious effects of aluminium on crop roots4,5. More recently, environmental scientists have reported a potentially harmful biogeochemical link between acidic deposition onto forest soils and aluminium toxicity in forest and aquatic communities of northeastern North America and northern Europe6–8. Because of this general interest in aluminium toxicity as an environmental threat, there have been renewed efforts to model the chemistry and transport of aqueous aluminium in soils and surface waters. Here we propose that much of the spatial and temporal variability in aqueous aluminium chemistry can be accounted for by a two-component equilibrium model involving a solid-phase humic adsorbent and an aluminium trihydroxide mineral phase. Inputs for the model are solution pH, copper-extractable organic aluminium and the titratable carboxyl content of soil humus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haug, A. CRC Crit. Rev. Pl. Sci. 1, 345–373 (1984).

    Article  CAS  Google Scholar 

  2. Baker, J. P. & Schofield, C. L. Wat. Air, Soil Pollut. 18, 289–309 (1982).

    Article  CAS  ADS  Google Scholar 

  3. Hue, N. V., Craddock, G. R. & Adams, F. Soil Sci. Soc. Am. J. 50, 28–34 (1986).

    Article  CAS  ADS  Google Scholar 

  4. Hardy, F. J. agric. Sci. 16, 616–630 (1926).

    Article  CAS  Google Scholar 

  5. Pavan, M. A. & Bingham, F. T. Soil Sci. Soc. Am. J. 46, 993–997 (1982).

    Article  CAS  ADS  Google Scholar 

  6. Cronan, C. S. & Schofield, C. L. Science 204, 304–306 (1979).

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Ulrich, B., Mayer, R. & Khanna, P. K. Soil Sci. 130, 193–199 (1980).

    Article  CAS  ADS  Google Scholar 

  8. Henriksen, A., Skogheim, O. K. & Rosseland, B. O. Vatten 2, 255–260 (1984).

    Google Scholar 

  9. Christophersen, N., Seip, H. M. & Wright, R. F. Wat. Resour. Res. 18, 977–996 (1982).

    Article  CAS  ADS  Google Scholar 

  10. Nordstrom, D. K. & Ball, J. W. Science 232, 54–56 (1986).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Bloom, P. R., McBride, M. B. & Weaver, R. M. Soil Sci. Soc. Am. J. 43, 488–493 (1979).

    Article  CAS  ADS  Google Scholar 

  12. Cronan, C. S. Oikos 34, 272–281 (1980).

    Article  CAS  Google Scholar 

  13. Driscoll, C. T., Van Breemen, N. & Mulder, J. Soil Sci. Soc. Am. J. 49, 437–444 (1985).

    Article  CAS  ADS  Google Scholar 

  14. Hooper, R. P. & Shoemaker, C. A. Science 229, 463–465 (1985).

    Article  CAS  ADS  PubMed  Google Scholar 

  15. Soil Survey Staff Soil Taxonomy. (Soil Conservation Service, USDA Washington D.C., 1981).

  16. Mattigod, S. V. & Sposito, G. Am. chem. Soc. Symp. Ser. 93, 837–856 (1979).

    CAS  Google Scholar 

  17. Nordstrom, D. K., Valentine, S. D., Ball, J. W., Plummer, L. N. & Jones, B. F. U.S.G.S. Water-Resources Investigation Report 84–4186 (1984).

  18. Johnson, N. M., Driscoll, C. T., Eaton, J. S., Likens, G. E. & McDowell, W. H. Geochim. cosmochim. Acta 45, 1421–1437 (1981).

    Article  CAS  ADS  Google Scholar 

  19. Bloom, P. R., McBride, M. B. & Chadbourne, B. Soil Sci. Soc. Am. J. 41, 1068–1073 (1977).

    Article  CAS  ADS  Google Scholar 

  20. Langmuir, D. in Adsorption from Aqueous Solutions (ed. Tewai, P. H.) 1–18 (Plenum, New York, 1981).

    Book  Google Scholar 

  21. Hargrove, W. L. & Thomas, G. W. Soil Sci. Soc. Am. J. 48, 1458–1460 (1984).

    Article  CAS  ADS  Google Scholar 

  22. Driscoll, C. T. Int. J. envir. analyt. Chem. 16, 267–283 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronan, C., Walker, W. & Bloom, P. Predicting aqueous aluminium concentrations in natural waters. Nature 324, 140–143 (1986). https://doi.org/10.1038/324140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324140a0

  • Springer Nature Limited

This article is cited by

Navigation