Skip to main content

Geochemical Indicators for Use in the Computation of Critical Loads and Dynamic Risk Assessments

  • Chapter
  • First Online:
Critical Loads and Dynamic Risk Assessments

Abstract

This chapter provides an overview of geochemical indicators for nitrogen (N), acidity, and metals in soil and water (soil solution, ground water and surface water) in view of their impacts on different endpoints (tree growth/health, human health, soil biodiversity etc.). Relevant indicators for N are the soil C/N ratio, nitrate (NO3) concentration in ground water and total N concentration in soil and surface water. For acidity the most relevant endpoint indicators are the exchangeable base cation pool or base saturation in the soil, the ratio of aluminium (Al) to base cation (Bc) in soil solution, the total Al concentration in ground water and the acid neutralizing capacity (ANC) in surface water. Relevant indicators for metals are the total or reactive metal concentration in the soil and the free or total metal ion concentration in water. Using critical limits for those endpoint indicators, it is possible to assess critical loads for both terrestrial and aquatic ecosystems based on geochemical modelling. An overview is given of the derivation of those limits, mostly under laboratory circumstances, and a critical evaluation of their relevance in the field situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39, 378–386.

    Google Scholar 

  • Aber, J. D., McDowell, W., Nadelhoffer, K., Magill, A., Berntsen, G., Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited. BioScience, 48, 921–934.

    Google Scholar 

  • Abrahamsen, G., Stuanes, A. O., & Tveite, B. (1993a). Introduction; study area; experimental design. In G. Abrahamsen, A. O. Stuanes, & B. Tveite (Eds.), Long-term experiments with acid rain in Norwegian ecosystems (pp. 3–33). New York: Springer-Verlag.

    Google Scholar 

  • Abrahamsen, G., Stuanes, A. O., & Tveite, B. (1993b). Discussion and synthesis. In G. Abrahamsen, A. O. Stuanes, & B. Tveite (Eds.), Long-term experiments with acid rain in Norwegian ecosystems (pp. 297–331). New York: Springer-Verlag.

    Google Scholar 

  • Achermann, B., & Bobbink, R. (Eds.). (2003). Empirical critical loads for nitrogen: Expert workshop, Berne, 11–13 November 2002. Berne: Swiss Agency for the Environment, Forests and Landscape.

    Google Scholar 

  • Adams, M. L., Zhao, F. J., McGrath, S. P., Nicholson, F. A., & Chambers, B. J. (2004). Predicting cadmium concentrations in wheat and barley grain using soil properties. Journal of Environmental Quality, 33, 532–541.

    CAS  Google Scholar 

  • Ahonen-Jonnarth, U., Göransson, A., & Finlay, R. D. (2003). Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentration. Tree Physiology, 23, 157–167.

    CAS  Google Scholar 

  • Akselsson, C., Ardö, J., & Sverdrup, H. (2004). Critical loads of acidity for forest soils and relationship to forest decline in the Northern Czech Republic. Environmental Monitoring and Assessment, 98, 363–379.

    Google Scholar 

  • Akselsson, C., Westling, O., Sverdrup, H., Holmqvist, J., Thelin, G., Uggla, E., et al. (2007). Impact of harvest intensity on long term base cation budgets in Swedish forest soils. Water, Air and Soil Pollution: Focus, 7, 201–210.

    CAS  Google Scholar 

  • Aldenberg, T., & Jaworska, J. S. (2000). Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicology and Environmental Safety, 46, 1–18.

    CAS  Google Scholar 

  • Aldenberg, T., & Slob, W. (1993). Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicology and Environmental Safety, 25, 48–63.

    CAS  Google Scholar 

  • Alewell, C., Manderscheid, B., Gerstberger, P., & Matzner, E. (2000). Effects of reduced atmospheric deposition on soil solution chemistry and elemental contents of spruce needles in NE-Bavaria, Germany. Zeitschrift für Pflanzenernährung und Bodenkunde, 163, 509–516.

    CAS  Google Scholar 

  • Allen, H. E. (1993). The significance of trace metal speciation for water, sediment and soil quality standards. Science of the Total Environment, 134, 23–45.

    Google Scholar 

  • Alloway, B. J. (Ed.). (1990). Heavy metals in soils. Glasgow: Blackie Academic & Professional, Chapman & Hall.

    Google Scholar 

  • Andersson, E., & Brunberg, A. K. (2006). Inorganic nutrient acquisition in a shallow clearwater lake—Dominance of benthic microbiota. Aquatic Sciences, 68, 172–180.

    CAS  Google Scholar 

  • Aronsson, A. (1980). Frost hardiness in Scots pine. II Hardiness during winter and spring in young trees of different mineral status. Studia Forestalia Suecica, 155, 1–27.

    Google Scholar 

  • Ashmore, M., van den Berg, L., Terry, A., Tipping, E., Lawlor, A. J., Lofts, S., et al. (2007). Development of an effects-based approach for toxic metals. (Report to the UK Department for Environment, Food and Rural Affairs, the Scottish Executive, the National Assembly for Wales and the Department of the Environment in Northern Ireland. Contract CPEA 24). University of York.

    Google Scholar 

  • Augustaitis, A., & Bytnerowicz, A. (2008). Contribution of ambient ozone to Scots pine defoliation and reduced growth in the Central European forests: A Lithuanian case study. Environmental Pollution, 155, 436–445.

    CAS  Google Scholar 

  • Augustin, S., Bolte, A., Holzhausen, M., & Wolff, B. (2005a). Exceedance of critical loads of nitrogen and sulphur and its relation to forest conditions. European Journal of Forest Research, 124, 289–300.

    CAS  Google Scholar 

  • Augustin, S., Stepanowitz, H., Wolff, B., Schröder, J., & Hoffmann, E. (2005b). Manganese in tree rings of Norway spruce as an indicator for soil chemical changes in the past. European Journal of Forest Research, 124, 313–318.

    CAS  Google Scholar 

  • Axler, R. P., & Reuter, J. E. (1996). Nitrate uptake by phytoplankton and periphyton: Whole-lake enrichments and mesocosm-N-15 experiments in an oligotrophic lake. Limnology and Oceanography, 41, 659–671.

    CAS  Google Scholar 

  • Axler, R. P., Rose, C., & Tikkanen, C. A. (1994). Phytoplankton nutrient deficiency as related to atmospheric nitrogen deposition in Northern Minnesota acid-sensitive lakes. Canadian Journal of Fisheries and Aquatic Science, 51, 1281–1296.

    Google Scholar 

  • Baatrup, E. (1991). Structural and functional-effects of heavy-metals on the nervous-system, including sense-organs, of fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 199, 253–257.

    Google Scholar 

  • Baker, J. P., & Schofield, C. L. (1982). Aluminum toxicity to fish in acidic waters. Water, Air, and Soil Pollution, 18, 289–309.

    CAS  Google Scholar 

  • Balsberg-Påhlsson, A. M. (1989). Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air, and Soil Pollution, 47, 287–319.

    Google Scholar 

  • Baron, J. S., Rueth, H. M., Wolfe, A. M., Nydick, K. R., Allstott, E. J., Minear, J. T., et al. (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3, 352–368.

    CAS  Google Scholar 

  • Baron, J. S., Schmidt, T. M., & Hartman, M. D. (2009). Climate-induced changes in high elevation stream nitrate dynamics. Global Change Biology, 15, 1777–1789.

    Google Scholar 

  • Beamish, R. J. (1974). Loss of fish populations from unexploited remote lakes in Ontario, Canada as a consequence of atmospheric fallout of acid. Water Research, 8, 85–95.

    CAS  Google Scholar 

  • Beamish, R. J., & Harvey, H. H. (1972). Acidification of La Cloche Mountain lakes, Ontario, and resulting fish mortalities. Journal of Fisheries Research Board of Canada, 29, 1131–1143.

    CAS  Google Scholar 

  • Beier, C., Blanck, K., Bredemeier, M., Lamersdorf, N., Rasmussen, L., & Xu, Y. J. (1998). Field-scale ‘clean rain’ treatments to two Norway spruce stands within the EXMAN project—Effects on soil solution chemistry, foliar nutrition and tree growth. Forest Ecology and Management, 101, 111–123.

    Google Scholar 

  • Bengtsson, G., & Tranvik, L. (1989). Critical metal concentrations for forest soil invertebrates. Water, Air, and Soil Pollution, 47, 381–417.

    CAS  Google Scholar 

  • Berdowski, J. J. M. (1993). The effect of external stress and disturbance factors on Calluna-dominated heathland vegetation. In R. Aerts, & G. W. Heil (Eds.), Heathlands: Patterns and processes in a changing environment (pp. 85–124). Dordrecht: Kluwer.

    Google Scholar 

  • Bergström, A. K. (2010). The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquatic Science, 72, 277–281.

    Google Scholar 

  • Bergström, A.-K., & Jansson, M. (2006). Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology, 12, 635–643.

    Google Scholar 

  • Bergström, A.-K., Blomqvist, P., & Jansson, M. (2005). Effects of atmospheric nitrogen deposition on nutrient limitation and phytoplankton biomass in unproductive Swedish lakes. Limnology and Oceanography, 50, 987–994.

    Google Scholar 

  • Bergström, A.-K., Jonsson, A., & Jansson, M. (2008). Phytoplankton responses to nitrogen and phosphorus enrichment in unproductive Swedish lakes along a gradient of atmospheric nitrogen deposition. Aquatic Biology, 4, 55–64.

    Google Scholar 

  • Binkley, D., & Högberg, P. (1997). Does atmospheric deposition of nitrogen threaten Swedish forests? Forest Ecology and Management, 92, 119–152.

    Google Scholar 

  • Birks, H. J. B., Jones, V. J., & Rose, N. L. (2004). Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments—Synthesis and general conclusions. Journal of Paleolimnology, 31, 531–546.

    Google Scholar 

  • Bobbink, R., & Hettelingh, J.-P. (2011). Review and revision of empirical critical loads and dose-response relationships: Proceedings of an Expert Workshop, Noordwijkerhout, 23–25 June 2010. (Report 680359002/2011). Bilthoven: Coordination Centre for Effects, National Institute for Public Health and the Environment.

    Google Scholar 

  • Bobbink, R., Boxman, D., Fremstad, E., Heil, G., Houdijk, A., & Roelofs, J. (1992). Critical loads for nitrogen eutrophication of terrestrial and wetland ecosystems based upon changes in vegetation and fauna. In P. Grennfelt & E. Thörnelöv (Eds.), Critical loads for nitrogen. Report from a workshop held at Lökeberg, Sweden, 6–10 April 1992 (pp. 111–161). Nordic Council of Ministers, Report 1992, 41.

    Google Scholar 

  • Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1996). Empirical nitrogen critical loads for natural and semi-natural ecosystems. In Manual on methodologies and criteria for mapping critical loads/levels (p. 54). UNECE Convention on Long-range Transboundary Air Pollution. Texte 71–96, III-1/III-54. Umweltbundesamt, Berlin.

    Google Scholar 

  • Bobbink, R., Hornung, M., & Roelofs, J. G. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717–738.

    CAS  Google Scholar 

  • Bobbink, R., Ashmore, M., Braun, S., Flückiger, W., & van den Wyngaert, I. J. J. (2003). Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. In B. Achermann, & R. Bobbink (Eds.), Empirical critical loads for nitrogen (pp. 43–170). Berne: Swiss Agency for Environment, Forest and Landscape SAEFL.

    Google Scholar 

  • Boekhold, A. E., Temminghoff, E. J. M., & van der Zee, S. E. A. T. M. (1993). Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil. Journal of Soil Science, 44, 85–96.

    CAS  Google Scholar 

  • Boggero, A., Barbieri, A., de Jong, J., Marchetto, A., & Mosello, R. (1998). Chemistry and critical loads of Alpine lakes in Canton Ticino (southern central Alps). Aquatic Science, 60, 300–315.

    CAS  Google Scholar 

  • Boxman, A. W., & van Dijk, H. F. G. (1988). Het effect van landbouw ammonium deposities op bos- en heidevegetaties. Katholieke Universiteit Nijmegen.

    Google Scholar 

  • Boxman, A. W., van Dijk, H. F. G., Houdijk, A. L. F. M., & Roelofs, J. G. M. (1988). Critical loads for nitrogen with special emphasis on ammonium. In J. Nilsson, & P. Grennfelt (Eds.), Critical loads for sulphur and nitrogen. Report from a workshop held at Skokloster, Sweden, 19–24 March, 1988. Miljø rapport 1988 15. (pp. 295–322). København: Nordic Council of Ministers.

    Google Scholar 

  • Boxman, A. W., Vandam, D., Vandijk, H. F. G., Hogervorst, R. F., & Koopmans, C. J. (1995). Ecosystem responses to reduced nitrogen and sulfur inputs into 2 coniferous forest stands in the Netherlands. Forest Ecology and Management, 71, 7–29.

    Google Scholar 

  • Braun, S., Schindler, C., Volz, R., & Flückiger, W. (2003). Forest damages by the storm ‘lothar’ in permanent observation plots in Switzerland: the significance of soil acidification and nitrogen deposition. Water, Air, and Soil Pollution, 142, 327–340.

    CAS  Google Scholar 

  • Bringmark, L., Bringmark, E., & Samuelsson, B. (1998). Effects on mor layer respiration by small experimental additions of mercury and lead. Science of the Total Environment, 213, 115–119.

    CAS  Google Scholar 

  • Bruck, R. I. (1985). Boreal montane ecosystem decline in the southern Appalachian Mountains: potential role of anthropogenic pollution. In H. S. Stubbs (Ed.), Air pollution effects on forest ecosystems (pp. 137–155). St. Paul, Minnesota: Acid Rain Foundation.

    Google Scholar 

  • Brunsting, A. M. H., & Heil, G. W. (1985). The role of nutrients in the interactions between a herbivorous beetle and some competing plant species in heathlands. Oikos, 44, 23–26.

    Google Scholar 

  • Brus, D. J., de Gruijter, J. J., Walvoort, D. J. J., De Vries, F., Bronswijk, J. J. B., Römkens, P. F. A. M., et al. (2002). Mapping the probability of exceeding critical thresholds for cadmium concentrations in soils in the Netherlands. Journal of Environmental Quality, 31, 1875–1884.

    CAS  Google Scholar 

  • Camargo, J. A., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32, 831–849.

    CAS  Google Scholar 

  • Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: A critique on the free-ion activity model. In A. Tessier, & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems (pp. 45–102). New York: Wiley.

    Google Scholar 

  • CLAG, Critical Loads Advisory Group. (1995). Critical loads of acid deposition for United Kingdom freshwaters. London: ITE Edinburgh/Department of the Environment.

    Google Scholar 

  • Clark, R. B. (2001). Metals. In Marine pollution (pp. 98–125). Oxford: Oxford Science Publishers.

    Google Scholar 

  • Cronan, C. S. (1991). Differential adsorption of Al, Ca and Mg by roots of red spruce (Picea rubens Sarg.). Tree Physiology, 8, 227–237.

    CAS  Google Scholar 

  • Cronan, C. S., & Grigal, D. F. (1995). Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209–226.

    CAS  Google Scholar 

  • Cronan, C. S., April, R., Bartlett, R. J., Bloom, P. R., Driscoll, C. T., Gherini, S. A., et al. (1989). Aluminum toxicity in forests exposed to acidic deposition: The ALBIOS results. Water, Air, and Soil Pollution, 48, 181–192.

    CAS  Google Scholar 

  • Das, P., Samantaray, S., & Rout, G. R. (1997). Studies on cadmium toxicity in plants: A review. Environmental Pollution, 98, 29–36.

    CAS  Google Scholar 

  • De Graaf, M. C. C., Bobbink, R., Roelofs, J. G. M., & Verbeek, P. J. M. (1998). Differential effects of ammonium and nitrate on three heathland species. Plant Ecology, 135, 185–196.

    Google Scholar 

  • De Visser, P. H. B. (1994). Growth and nutrition of Douglas-fir, Scots pine and pedunculate oak in relation to soil acidification. PhD Thesis, Wageningen Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • De Vries, W. (1993). Average critical loads for nitrogen and sulfur and its use in acidification abatement policy in the Netherlands. Water, Air, and Soil Pollution, 68, 399–434.

    CAS  Google Scholar 

  • De Vries, W., & Groenenberg, J. E. (2009). Evaluation of approaches to calculate critical metal loads for forest ecosystems. Environmental Pollution, 157, 3422–3432.

    CAS  Google Scholar 

  • De Vries, W., & Kros, J. (1989). The long-term impact of acid deposition on the aluminium chemistry of an acid forest soil. In J. Kämäri, D. F. Brakke, A. Jenkins, S. A. Norton, & R. F. Wright (Eds.). Regional acidification models (pp. 113–128). Berlin: Springer-Verlag.

    Google Scholar 

  • De Vries, W., Posch, M., & Kämäri, J. (1989). Simulation of the long-term soil response to acid deposition in various buffer ranges. Water, Air, and Soil Pollution, 48, 349–390.

    Google Scholar 

  • De Vries, W., Reinds, G. J., & Posch, M. (1994). Assessment of critical loads and their exceedance on European forests using a one-layer steady-state model. Water, Air, and Soil Pollution, 72, 357–394.

    Google Scholar 

  • De Vries, W., Vel, E., Reinds, G. J., Deelstra, H., Klap, J. M., Leeters, E. E. J. M., et al. (2003). Intensive monitoring of forest ecosystems in Europe: 1. Objectives, set-up and evaluation strategy. Forest Ecology and Management, 174, 77–95.

    Google Scholar 

  • De Vries, W., van der Salm, C., Reinds, G. J., & Erisman, J. W. (2007a). Element fluxes through European forest ecosystems and their relationships with stand and site characteristics. Environmental Pollution, 148, 501–513.

    CAS  Google Scholar 

  • De Vries, W., Lofts, S., Tipping, E., Meili, M., Groenenberg, B. J., & Schütze, G. (2007b). Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc and mercury in soil and soil solution in view of ecotoxicological effects. Reviews of Environmental Contamination and Toxicology, 191, 47–89.

    CAS  Google Scholar 

  • De Vries, W., Kros, J., Reinds, G. J., Wamelink, G. W. W., Mol, J., van Dobben, H., et al. (2007c). Developments in deriving critical limits and modelling critical loads of nitrogen for terrestrial ecosystems in Europe. (Report 1382). Wageningen, The Netherlands, Alterra Wageningen UR.

    Google Scholar 

  • De Vries, W., Römkens, P. F. A. M., Bonten, L., Rietra, R. P. J. J., Ma, W. C., & Faber, J. (2008). De invloed van bodemeigenschappen op kritische concentraties voor zware metalen en organische microverontreinigingen in de bodem. (Alterra-rapport 817). Wageningen: (in Dutch).

    Google Scholar 

  • De Vries, W., Posch, M., Reinds, G. J., & Hettelingh, J.-P. (2014). Quantification of impacts of nitrogen deposition on forest ecosystem services in Europe. In M. A. Sutton, K. E. Mason, L. J. Sheppard, H. Sverdrup, R. Haeuber, & W. K. Hicks (Eds.), Critical loads, nitrogen deposition and biodiversity. Chapter 43 (pp. 411–424). Springer.

    Google Scholar 

  • De Wit, H. A., & Lindholm, M. (2010). Nutrient enrichment effects of atmospheric N deposition on biology in oligotrophic surface waters—A review. (NIVA report). Oslo: Norwegian Institute for Water Research.

    Google Scholar 

  • De Wit, H. A., Mulder, J., Nygaard, P. H., & Aamlid, D. (2001a). Testing the aluminium toxicity hypothesis: A field manipulation experiment in mature spruce forest in Norway. Water, Air, and Soil Pollution, 130, 995–1000.

    Google Scholar 

  • De Wit, H. A., Mulder, J., Nygaard, P. H., Aamlid, D., Huse, M., Kortnes, E., et al. (2001b). Aluminium: The need for a re-evaluation of its toxicity and solubility in mature spruce stands. Water, Air, and Soil Pollution: Focus, 1, 103–118.

    CAS  Google Scholar 

  • De Wit, H. A., Eldhuset, T., & Mulder, J. (2010). Dissolved Al reduces Mg uptake in Norway spruce forest: Results from a long-term field manipulation experiment in Norway. Forest Ecology and Management, 259, 2072–2082.

    Google Scholar 

  • Di Toro, D. M., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., & Santore, R. C. (2001). Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environmental Toxicology and Chemistry, 20, 2383–2396.

    CAS  Google Scholar 

  • Dise, N. B., Matzner, E., & Forsius, M. (1998a). Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe. Environmental Pollution, 102, 453–456.

    CAS  Google Scholar 

  • Dise, N. B., Matzner, E., & Gundersen, P. (1998b). Synthesis of nitrogen pools and fluxes from European forest ecosystems. Water, Air, and Soil Pollution, 105, 143–154.

    CAS  Google Scholar 

  • Dise, N. B., Rothwell, J. J., Gauci, V., van der Salm, C., & De Vries, W. (2009). Predicting nitrate leaching in European forests using two independent databases. Science of the Total Environment, 407, 1798–1808.

    CAS  Google Scholar 

  • Duan, L., Hao, J., Xie, S., & Du, K. (2000). Critical loads of acidity for surface waters in China. Science of the Total Environment, 246, 1–10.

    CAS  Google Scholar 

  • EC. (1998). Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Brussel: European Commision.

    Google Scholar 

  • Eldhuset, T. D., Lange, H., & De Wit, H. A. (2006). Fine root biomass, necromass and chemistry during seven years of elevated aluminium concentrations in the soil solution of a middle-aged Picea abes stand. Science of the Total Environment, 396, 344–356.

    Google Scholar 

  • Ellenberg, H. Jr. (1985). Veränderungen der Flora Mitteleuropas unter dem Einfluss von Düngung und Immissionen. Schweizerische Zeitschrift für Forstwesen, 136, 19–39.

    Google Scholar 

  • Elser, J. J., Marzolf, E. R., & Goldman, C. R. (1990). Phosphorus and nitrogen limitation of phytoplankton growth in the fresh-waters of North-America—A review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Science, 47, 1468–1477.

    CAS  Google Scholar 

  • Elser, J. J., Bracken, M. E. S., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., et al. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142.

    Google Scholar 

  • Elser, J. J., Andersen, T., Baron, J. S., Bergström, A. K., Jansson, M., Kyle, M., et al. (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326, 835.

    CAS  Google Scholar 

  • Erisman, J. W., & De Vries, W. (2000). Nitrogen deposition and effects on European forests. Environmental Reviews, 8, 65–93.

    CAS  Google Scholar 

  • EU. (2001). Verordening nr. 466/2001 van 8 maart 2001, tot vaststelling van maximumgehalten aan bepaalde verontreinigingen in levensmiddelen. Publicatieblad van de Europese Gemeenschappen L 77.

    Google Scholar 

  • Falkengren-Grerup, U. (1986). Soil acidification and vegetation changes in deciduous forest in southern Sweden. Oecologia, 70, 339–347.

    Google Scholar 

  • Falkengren-Grerup, U., & Tyler, G. (1993). Experimental evidence for the relative sensitivity of deciduous forest plants to high soil acidity. Forest Ecology and Management, 60, 311–326.

    Google Scholar 

  • Falkengren-Grerup, U., van der Hoek, K. W., Erisman, J. W., Smeulders, S., & Wisniewski, J. R. (1998). Nitrogen response of herbs and graminoids in experiments with simulated acid soil solution. Environmental Pollution, 102, 93–99.

    CAS  Google Scholar 

  • Fee, E. J. (1979). Relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnology and Oceanography, 24, 401–416.

    CAS  Google Scholar 

  • Fergusson, J. E. (1990). The heavy elements: Chemistry environmental impact and health effects. Oxford: Pergamon Press.

    Google Scholar 

  • Finlay, J. C., Small, G. E., & Sterner, R. W. (2013). Human influences in nitrogen removal in lakes. Science, 342, 247–250.

    CAS  Google Scholar 

  • Fischer, R., Mues, V., Ulrich, E., Becher, G., & Lorenz, M. (2007). Monitoring of atmospheric deposition in European forests and an overview of its implication on forest condition. Applied Geochemistry, 22, 1129–1139.

    CAS  Google Scholar 

  • Flückiger, W., Braun, S., & Hiltbrunner, E. (2002). Effects of air pollutants on biotic stress. In J. N. B. Bell & M. Treshow (Eds.), Air pollution and plant life (2nd edn., pp. 379–406). Chichester: Wiley.

    Google Scholar 

  • Gigon, A., & Rorison, I. H. (1972). The response of some ecologically distinct plant species to nitrate- and to ammonium-nitrogen. Journal of Ecology, 60, 93–102.

    CAS  Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30, 1389–1414.

    CAS  Google Scholar 

  • Gray, D. K., Arnott, S. E., Shead, J. A., & Derry, A. M. (2012). The recovery of acid-damaged zooplankton communities in Canadian lakes: the relative importance of abiotic, biotic and spatial variables. Freshwater Biology, 57, 741–758.

    CAS  Google Scholar 

  • Green, M. B., & Finlay, J. C. (2010). Patterns of hydrologic control over stream water total nitrogen to total phosphorus ratios. Biogeochemistry, 99, 15–30.

    CAS  Google Scholar 

  • Groenenberg, J. E., Römkens, P. F. A. M., Comans, R. N. J., Luster, J., Pampura, T., Shotbolt, L., et al. (2010). Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: Derivation of relationships for free metal ion activities and validation with independent data. European Journal of Soil Science, 61, 58–73.

    CAS  Google Scholar 

  • Groenenberg, J. E., Dijkstra, J. J., Bonten, L. T. C., De Vries, W., & Comans, R. N. J. (2012). Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils. Environmental Pollution, 166, 98–107.

    CAS  Google Scholar 

  • Gundersen, P., Callesen, I., & De Vries, W. (1998). Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Environmental Pollution, 102, 403–407.

    CAS  Google Scholar 

  • Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests—Effects of air pollution and forest management. Environmental Reviews, 14, 1–57.

    CAS  Google Scholar 

  • Hecky, R. E., & Kilham, P. (1988). Nutrient limitation of phytoplankton in fresh-water and marine environments—A review of recent-evidence on the effects of enrichment. Limnology and Oceanography, 33, 796–822.

    CAS  Google Scholar 

  • Helbing, D. (2013). Globally networked risk and how to respond. Nature, 497, 51–59.

    CAS  Google Scholar 

  • Henriksen, A., Lien, L., Traaen, T. S., Sevaldrud, I. S., & Brakke, D. F. (1988). Lake acidification in Norway—Present and predicted chemical status. Ambio, 17, 259–266.

    CAS  Google Scholar 

  • Henriksen, A., Lien, L., Rosseland, B. O., Traaen, T. S., & Sevaldrud, I. S. (1989). Lake acidification in Norway—Present and predicted fish status. Ambio, 18, 314–321.

    Google Scholar 

  • Henriksen, A., Posch, M., Hultberg, H., & Lien, L. (1995). Critical loads of acidity for surface waters—Can the ANClimit be considered variable? Water, Air, and Soil Pollution, 85, 2419–2424.

    CAS  Google Scholar 

  • Henriksen, A., Dillon, P. J., & Aherne, J. (2002). Critical loads of acidity for surface waters in south-central Ontario, Canada: Regional application of the Steady-State Water Chemistry (SSWC) model. Canadian Journal of Fisheries and Aquatic Science, 59, 1287–1295.

    CAS  Google Scholar 

  • Hesthagen, T., Sevaldrud, I. H., & Berger, H. M. (1999). Assessment of damage to fish population in Norwegian lakes due to acidification. Ambio, 28, 112–117.

    Google Scholar 

  • Hesthagen, T., Fjellheim, A., Schartau, A. K., Wright, R. F., Saksgård, R., & Rosseland, B. O. (2011). Chemical and biological recovery of Lake Saudlandsvatn, a formerly highly acidified lake in southernmost Norway, in response to decreased acid deposition. Science of the Total Environment, 409, 2908–2916.

    CAS  Google Scholar 

  • Hettelingh, J.-P., Posch, M., Slootweg, J., Reinds, G. J., Spranger, T., & Tarrasón, L. (2007). Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water, Air, and Soil Pollution: Focus, 7, 379–384.

    CAS  Google Scholar 

  • Hettelingh, J.-P., Posch, M., & Slootweg, J. (2009). Progress in the modelling of critical thresholds, impacts to plant species diversity and ecosystem services in Europe. (CCE Status Report 2009). Bilthoven: RIVM, Coordination Centre for Effects.

    Google Scholar 

  • Hobbs, W. O., Telford, R. J., Birks, H. J. B., Saros, J. E., Hazewinkel, R. R. O., Perren, B. B., et al. (2010). Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS One, 5, e10026.

    Google Scholar 

  • Holmgren, S. U., Bigler, C., Ingolfsson, O., & Wolfe, A. P. (2009). The Holocene–Anthropocene transition in lakes of western Spitsbergen, Svalbard (Norwegian High Arctic): Climate change and nitrogen deposition. Journal of Paleolimnology, 43, 393–412.

    Google Scholar 

  • Huber, C., Kreutzer, K., Rohle, H., & Rothe, A. (2004). Response of artificial acid irrigation, liming, and N-fertilisation on elemental concentrations in needles, litter fluxes, volume increment, and crown transparency of a N saturated Norway spruce stand. Forest Ecology and Management, 200, 3–21.

    Google Scholar 

  • Hultberg, H. (1988). Critical loads for sulphur to lakes and streams. In J. Nilsson, & P. Grennfelt (Eds.), Critical loads for sulphur and nitrogen; Report from a workshop held at Skokloster, Sweden, 19–24 March, 1988. Miljø rapport 1988 15 (pp. 185–200). Copenhagen: Nordic Council of Ministers.

    Google Scholar 

  • Hultberg, H., & Stenson, J. (1970). Försurningens effekter på fiskfaunan i två bohusländska småsjöar. Fauna och Flora, 65, 11–20.

    Google Scholar 

  • Hutchinson, T. C., Bozic, L., & Munoz-Vega, G. (1986). Responses of five species of conifer seedlings to aluminum stress. Water, Air, and Soil Pollution, 31, 283–294.

    CAS  Google Scholar 

  • Jansson, M., Bergstrom, A. K., Drakare, S., & Blomqvist, P. (2001). Nutrient limitation of bacterioplankton and phytoplankton in humic lakes in northern Sweden. Freshwater Biology, 46, 653–666.

    CAS  Google Scholar 

  • Jeffries, D. S., & Lam, D. C. L. (1993). Assessment of the effect of acidic deposition on Canadian lakes: Determination of critical loads for sulphate deposition. Water Science Technology, 28, 183–187.

    CAS  Google Scholar 

  • Jensen, K. W., & Snekvik, E. (1972). Low pH levels wipe out salmon and trout populations in southernmost Norway. Ambio, 1, 223–225.

    Google Scholar 

  • Joslin, J. D., & Wolfe, M. H. (1988). Responses of red spruce seedlings to changes in soil aluminum in six amended forest soil horizons. Canadian Journal of Forest Research, 18, 1614–1623.

    CAS  Google Scholar 

  • Joslin, J. D., & Wolfe, M. H. (1989). Aluminum effects on northern red oak seedling growth in six forest soil horizons. Soil Science Society of America Journal, 53, 274–281.

    CAS  Google Scholar 

  • Keltjens, W. G., & van Loenen, E. (1989). Effects of aluminium and mineral nutrition on growth and chemical composition of hydroponically grown seedlings of five different forest tree species. Plant and Soil, 119, 39–50.

    CAS  Google Scholar 

  • Kinraide, T. B. (2003). Toxicity factors in acidic forest soils: Attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation. European Journal of Soil Science, 54, 323–333.

    CAS  Google Scholar 

  • Kinzel, S. (1982). Pflanzenökologie und Mineralstoffwechsel. Stuttgart: Ulmer.

    Google Scholar 

  • Klap, J. M., Oude Voshaar, J. H., De Vries, W., & Erisman, J. W. (2000). Effects of environmental stress on forest crown condition in Europe. Part IV: Statistical analysis of relationships. Water, Air, and Soil Pollution, 119, 387–420.

    CAS  Google Scholar 

  • Kleijn, D., Bekker, R. M., Bobbink, R., de Graaf, M. C. C., & Roelofs, J. G. M. (2008). In search for key biogeochemical factors affecting plant species persistence in heathland and acidic grasslands: A comparison of common and rare species. Journal of Applied Ecology, 45, 680–687.

    CAS  Google Scholar 

  • Kratzer, C. R., & Brezonik, P. L. (1981). A Carlson-type trophic state index for Florida lakes. Water Resources Bulletin, 17, 713–715.

    CAS  Google Scholar 

  • Kreutzer, K. (1995). Effects of forest liming on soil processes. Plant and Soil, 168, 447–470.

    Google Scholar 

  • Kreutzer, K., & Weiss, T. (1998). The Höglwald field experiments—Aims, concept and basic data. Plant and Soil, 199, 1–10.

    CAS  Google Scholar 

  • Kreutzer, K., Beier, C., Bredemeier, M., Blanck, K., Cummins, T., Farrell, E. P., et al. (1998). Atmospheric deposition and soil acidification in five coniferous forest ecosystems: A comparison of the control plots of the EXMAN sites. Forest Ecology and Management, 101, 125–142.

    Google Scholar 

  • Lafrancois, B. M., Nydick, K. R., Johnson, B. M., & Baron, J. S. (2004). Cumulative effects of nutrients and pH on the plankton of two mountain lakes. Canadian Journal of Fisheries and Aquatic Science, 61, 1153–1165.

    CAS  Google Scholar 

  • Lamersdorf, N. P., & Borken, W. (2004). Clean rain promotes fine root growth and soil respiration in a Norway spruce forest. Global Change Biology, 10, 1351–1362.

    Google Scholar 

  • Larssen, T., Lund, E., & Høgåsen, T. (2008). Exceedance of critical loads for aciddification and nitrogen for Norway—Update for the period 2002–2006. (NIVA-report 5697–2008). Oslo: Norwegian Institute for Water Research.

    Google Scholar 

  • Lawrence, G. B., Lapenis, A., Berggren, D., Aparin, B. F., Smith, K. T., Shortle, W. C., et al. (2005). Climate dependency of tree growth suppressed by acid deposition effects on soils in northwest Russia. Environmental Science and Technology, 39, 2004–2010.

    CAS  Google Scholar 

  • Leivestad, H., & Muniz, I. P. (1976). Fish kill at low pH in a Norwegian river. Nature, 259, 391–392.

    CAS  Google Scholar 

  • Lewis, W. M., & Wurtsbaugh, W. A. (2008). Control of lacustrine phytoplankton by nutrients: Erosion of the phosphorus paradigm. Internationale Revue der Hydrobiologie, 93, 446–465.

    CAS  Google Scholar 

  • Lien, L., Raddum, G. G., Fjellheim, A., & Henriksen, A. (1996). A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and invertebrate responses. Science of the Total Environment, 177, 173–193.

    CAS  Google Scholar 

  • Lofts, S., Spurgeon, D. J., Svendsen, C., & Tipping, E. (2004). Deriving soil critical limits for Cu, Zn, Cd and Pb: A method based on free ion concentrations. Environmental Science and Technology, 38, 3623–3631.

    CAS  Google Scholar 

  • Løkke, H., Bak, J., Falkengren-Grerup, U., Finlay, R. D., Ilvesniemi, H., Nygaard, P. H., et al. (1996). Critical loads of acidic deposition for forest soils: Is the current approach adequate? Ambio, 25, 510–516.

    Google Scholar 

  • Lucassen, E. C. H. E. T., Bobbink, R., Smolders, A. J. P., van der Ven, P. J. M., Lamers, L. P. M., & Roelofs, J. G. M. (2003). Interactive effects of low pH and high ammonium levels responsible for the decline of Cirsium dissectum (L.) Hill. Plant Ecology, 165, 45–52.

    Google Scholar 

  • Lydersen, E., Larssen, T., & Fjeld, E. (2004). The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. Science of the Total Environment, 326, 63–69.

    CAS  Google Scholar 

  • Maberly, S. C., King, L., Dent, M. M., Jones, R. I., & Gibson, C. E. (2002). Nutrient limitation of phytoplankton and periphyton growth in upland lakes. Freshwater Biology, 47, 2136–2152.

    Google Scholar 

  • MacDonald, J. A., Dise, N. B., Matzner, E., Armbruster, M., Gundersen, P., & Forsius, M. (2002). Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 8, 1028–1033.

    Google Scholar 

  • Mance, G. (1987). Pollution threat of heavy metals in aquatic environments. London: Elsevier Applied Science.

    Google Scholar 

  • Marschner, H. (1990). Mineral nutrition of higher plants. London: Academic.

    Google Scholar 

  • Matson, P., Lohse, K. A., & Hall, S. J. (2002). The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. Ambio, 31, 113–119.

    Google Scholar 

  • Matzner, E., & Murach, D. (1995). Soil changes induced by air pollutant deposition and their implication for forests in central Europe. Water, Air, and Soil Pollution, 85, 63–76.

    CAS  Google Scholar 

  • McCormick, L. H., & Steiner, K. C. (1978). Variation in aluminum tolerance among six genera of trees. Forest Science, 24, 565–568.

    Google Scholar 

  • Meili, M. (1997). Mercury in lakes and rivers. In A. Sigel & H. Sigel (Eds.), Mercury and its effects on environment and biology (pp. 21–51). New York: Marcel Dekker Inc.

    Google Scholar 

  • Meili, M., Bishop, K., Bringmark, L., Johansson, K., Munthe, J., Sverdrup, H., et al. (2003). Critical levels of atmospheric pollution: Criteria and concepts for operational modelling of mercury in forest and lake ecosystems. Science of the Total Environment, 304, 83–106.

    CAS  Google Scholar 

  • Mengel, K. (1991). Ernährung und Stoffwechsel der Pflanze. 7th revised edition. Jena.

    Google Scholar 

  • Moiseenko, T. (1994). Acidification and critical load in surface waters: Kola, Northern Russia. Ambio, 23, 418–424.

    Google Scholar 

  • Monteith, D. T., Hildrew, A. G., Flower, R. J., Raven, P. J., Beaumont, W. R. B., Collen, P., et al. (2005). Biological responses to the chemical recovery of acidified fresh waters in the UK. Environmental Pollution, 137, 83–101.

    CAS  Google Scholar 

  • Morel, F. M. M. (1983). Principles of aquatic chemistry. New York: Wiley.

    Google Scholar 

  • Morris, D. P., & Lewis, W. M. (1988). Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology, 20, 315–327.

    Google Scholar 

  • Mulder, J., Van Breemen, N., & Eijck, H. (1989). Depletion of soil aluminum by acid deposition and implications for acid neutralization. Nature, 337, 247–249.

    CAS  Google Scholar 

  • Nelleman, C., & Frogner, T. (1994). Spatial patterns of spruce defoliation seen in relation to acid deposition, critical loads and natural growth conditions in Norway. Ambio, 23, 255–259.

    Google Scholar 

  • Nihlgård, B. (1985). The ammonium hypothesis—An additional explanation for the forest dieback in Europe. Ambio, 14, 2–8.

    Google Scholar 

  • Nilsson, L. O., & Wiklund, K. (1995a). Indirect effects of N and S deposition on a Norway spruce ecosystem. An update of findings within the Skogaby project. Water, Air, and Soil Pollution, 85, 1613–1622.

    CAS  Google Scholar 

  • Nilsson, L. O., & Wiklund, K. (1995b). Nutrient balance and P, K, Ca, Mg, S and B accumulation in a Norway spruce stand following ammonium-sulfate application, fertigation, irrigation, drought and N-free-fertilization. Plant and Soil, 168, 437–446.

    Google Scholar 

  • Nowotny, I., Dahne, J., Klingelhofer, D., & Rothe, G. M. (1998). Effect of artificial soil acidification and liming on growth and nutrient status of mycorrhizal roots of Norway spruce (Picea abies [L.] Karst.). Plant and Soil, 199, 29–40.

    CAS  Google Scholar 

  • Nydick, K. R., Lafrancois, B. M., Baron, J. S., & Johnson, B. M. (2003). Lake-specific responses to elevated atmospheric nitrogen deposition in the Colorado Rocky Mountains, USA. Hydrobiologia (incorporating JAQU), 510, 103–114.

    CAS  Google Scholar 

  • Nydick, K. R., Lafrancois, B. M., Baron, J. S., & Johnson, B. M. (2004). Nitrogen regulation of algal biomass, productivity, and composition in shallow mountain lakes, Snowy Range, Wyoming, USA. Canadian Journal of Fisheries and Aquatic Sciences, 61, 1256–1268.

    CAS  Google Scholar 

  • Nygaard, P. H., & de Wit, H. A. (2004). Effects of elevated soil solution Al concentrations on fine roots in a middle-aged Norway spruce (Picea abies (L.) Karst.) stand. Plant and Soil, 265, 131–140.

    CAS  Google Scholar 

  • OECD, (Organisation for Economic Cooperation and Development). (1989). Report of the OECD workshop on ecological effects assessment. Paris: OECD Environment Monographs No. 26.

    Google Scholar 

  • Olsson, M. O., & Falkengren-Grerup, U. (2000). Potential nitrification as an indicator of preferential uptake of ammonium or nitrate by plants in an oak understory. Annals of Botany, 85, 299–305.

    CAS  Google Scholar 

  • Palmborg, C., Bringmark, L., Bringmark, E., & Nordgren, A. (1998). Multivariate analysis of microbial activity and soil organic matter at a forest site subjected to low-level heavy metal pollution. Ambio, 27, 53–57.

    Google Scholar 

  • Paulissen, M. P. C. P., van der Ven, P. J. M., Dees, A. J., & Bobbink, R. (2004). Differential effects of nitrate and ammonium on three fen bryophyte species in relation to pollutant nitrogen input. New Phytologist, 164, 551–458.

    Google Scholar 

  • Persson, H., & Majdi, H. (1995). Effects of acid deposition on tree roots in Swedish forest stands. Water, Air, and Soil Pollution, 85, 1287–1292.

    CAS  Google Scholar 

  • Pla, S., Monteith, D., Flower, R., & Rose, N. (2009). The recent palaeolimnology of a remote Scottish loch with special reference to the relative impacts of regional warming and atmospheric contamination. Freshwater Biology, 54, 505–523.

    Google Scholar 

  • Posch, M., Kämäri, J., Forsius, M., Henriksen, A., & Wilander, A. (1997). Exceedance of critical loads for lakes in Finland, Norway and Sweden: Reduction requirements for acidifying nitrogen and sulfur deposition. Environmental Management, 21, 291–304.

    Google Scholar 

  • Posch, M., Aherne, J., Forsius, M., & Rask, M. (2012). Past, present, and future exceedance of critical loads of acidity for surface waters in Finland. Environmental Science and Technology, 46, 4507–4514.

    CAS  Google Scholar 

  • Prasad, M. N. V. (1995). Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 35, 525–545.

    CAS  Google Scholar 

  • Rask, M., Mannio, J., Forsius, M., Posch, M., & Vuorinen, P. J. (1995). How many fish populations in Finland are affected by acid precipitation? Environmental Biology of Fishes, 42, 51–63.

    Google Scholar 

  • Rengel, Z. (1992). Role of calcium in aluminum toxicity. New Phytologist, 121, 499–513.

    CAS  Google Scholar 

  • Ritchie, G. S. P., & Sposito, G. (2001). Speciation in soils. In A. M. Ure & C. M. Davidson (Eds.), Chemical speciation in the environment (pp. 237–264). Oxford: Blackwell Science.

    Google Scholar 

  • Roelofs, J. G. M., Kempers, A. J., Houdijk, A. L. F. M., & Jansen, J. (1985). The effect of airborne ammonium sulphate on Pinus nigra var. maritima in the Netherlands. Plant and Soil, 84, 45–56.

    CAS  Google Scholar 

  • Römkens, P. F. A. M., Groenenberg, J. E., Bonten, L. T. C., De Vries, W., & Bril, J. (2004). Derivation of partition relationships to calculate Cd, Cu, Ni, Pb and Zn solubility and activity in soil solutions. (Alterra Rapport 305). Wageningen: Alterra.

    Google Scholar 

  • Rost-Siebert, K. (1983). Aluminium-Toxizität und -Toleranz an Keimpflanzen von Fichte (Picea abies Karst.) und Buche (Fagus silvatica L. ). Allgemeine Forstzeitschrift, 26/27, 686–689.

    Google Scholar 

  • Rothe, A., Huber, C., Kreutzer, K., & Weis, W. (2002). Deposition and soil leaching in stands of Norway spruce and European Beech: Results from the Höglwald research in comparison with other European case studies. Plant and Soil, 240, 33–45.

    CAS  Google Scholar 

  • Ruhland, K., Paterson, A. M., & Smol, J. P. (2008). Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology, 14, 2740–2754.

    Google Scholar 

  • Ryan, P. J., Gessel, S. P., & Zasoski, R. J. (1986a). Acid tolerance of Pacific Northwest conifers in solution culture. I: Effect of high aluminium concentration and solution acidity. Plant and Soil, 96, 239–257.

    CAS  Google Scholar 

  • Ryan, P. J., Gessel, S. P., & Zasoski, R. J. (1986b). Acid tolerance of Pacific Northwest conifers in solution culture. II: Effect of varying aluminium concentration at constant pH. Plant and Soil, 96, 259–272.

    CAS  Google Scholar 

  • Saros, J. E., Interlandi, S. J., Wolfe, A. P., & Engstrom, D. R. (2003). Recent changes in the diatom community structure of lakes in the Beartooth Mountain Range, USA. Arctic, Antarctic, and Alpine Research, 35, 18–23.

    Google Scholar 

  • Saros, J. E., Michel, T. J., Interlandi, S. J., & Wolfe, A. P. (2005). Resource requirements of Asterionella Formosa and Fragilaria crotonsis in oligotrophic alpine lakes: Implications for recent phytoplankton community reorganisations. Canadian Journal of Fisheries and Aquatic Science, 62, 1681–1689.

    CAS  Google Scholar 

  • Sauvé, S., Norvell, W. A., McBride, M. B., & Hendershot, W. H. (2000). Speciation and complexation of cadmium in extracted soil solutions. Environmental Science and Technology, 34, 291–296.

    Google Scholar 

  • Saxe, J. K., Impellitteri, C. A., Peijnenburg, W. J. G. M., & Allen, H. E. (2001). Novel model describing trace metal concentrations in the earthworm, Eisenia andrei. Environmental Science and Technology, 35, 4522–4529.

    CAS  Google Scholar 

  • Schindler, D. W. (1971). Carbon, nitrogen, and phosphorus and eutrophication of freshwater lakes. Journal of Phycology, 7, 321–329.

    CAS  Google Scholar 

  • Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, 195, 260–262.

    CAS  Google Scholar 

  • Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., et al. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of United States of America, 105, 11254–11258.

    CAS  Google Scholar 

  • Schofield, C. L. (1976). Acid precipitation: Effects on fish. Ambio, 5, 228–230.

    Google Scholar 

  • Schröder, W. H., Bauch, J., & Endeward, R. (1988). Microbeam analysis of Ca exchange and uptake in the fine roots of spruce: Influence of pH and aluminum. Trees, 2, 96–103.

    Google Scholar 

  • Schulze, E.-D. (1989). Air pollution and forest decline in a spruce (Picea Abies) forest. Science, 244, 776–783.

    CAS  Google Scholar 

  • Schütze, G., Lorenz, U., & Spranger, U. (2003). Expert meeting on critical limits for heavy metals and methods for their application. Berlin: Proceedings, UBA Texte 47/2003. Berlin: Umweltbundesamt.

    Google Scholar 

  • Scott, J. T., & McCarthy, M. J. (2010). Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnology and Oceanography, 55, 1265–1270.

    CAS  Google Scholar 

  • Slooff, W. (1992). RIVM guidance document: Ecotoxicological effect assessment. Deriving maximum tolerable concentrations from single-species toxicity data. (Report 719102018). Bilthoven: National Institute of Public Health and the Environment (RIVM).

    Google Scholar 

  • Smit, H. P., Keltjens, W. G., & van Breemen, N. (1987). Effects of soil acidity on Douglas fir seedlings. 2. The role of pH, aluminium concentration and nitrogen nutrition (pot experiment). Netherlands Journal of Agricultural Science, 35, 537–540.

    Google Scholar 

  • Sola, F., Isaia, J., & Masoni, A. (1995). Effects of copper on gill structure and transport function in the rainbow trout, Oncorhynchus mykiss. Journal of Applied Toxicology, 15, 391–398.

    CAS  Google Scholar 

  • Solberg, S., Kvindesland, S., Aamlid, D., & Venn, K. (2002). Crown condition and needle chemistry of Norway spruce in relation to critical loads of acidity in South-East Norway. Water, Air, and Soil Pollution, 140, 157–171.

    CAS  Google Scholar 

  • Spiecker, H., Mielikäinen, K., Kölh, M., & Skovsgaard, J. P. (Eds.). (1996). Growth trends in European forests. Studies from 12 Countries. Berlin: Springer-Verlag.

    Google Scholar 

  • Spurgeon, D. J., & Hopkin, S. P. (1996). Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia, 40, 80–96.

    CAS  Google Scholar 

  • Steiner, K. C., McCormick, L. H., & Canavera, D. S. (1980). Differential response of paper birch provenances to aluminium in solution culture. Canadian Journal of Forest Research, 10, 25–29.

    CAS  Google Scholar 

  • Sterner, R. W. (2008). On the phosphorus limitation paradigm for lakes. International Review of Hydrobiology, 93, 433–445.

    CAS  Google Scholar 

  • Stoddard, J. L. (1994). Long-term changes in watershed retention of nitrogen: Its causes and aquatic consequences. In L. A. Baker (Ed.). Environmental chemistry of lakes and reservoirs (pp. 223–284). Washington, DC: American Chemical Society.

    Google Scholar 

  • Suding, K. N., Collins, S. L., Gough, L., Clark, C., Cleland, E. E., Gross, K. L., et al. (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387–4392.

    Google Scholar 

  • Sverdrup, H., & Warfvinge, P. (1993). The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca + Mg + K)/Al ratio. Reports in ecology and environmental engineering 1993:2. Lund University, Department of Chemical Engineering II.

    Google Scholar 

  • Sverdrup, H., De Vries, W., & Henriksen, A. (1990). Mapping critical loads. A guidance manual to criteria calculation methods data collection and mapping. Miljø rapport 1990:14. Nordic Council of Ministers Copenhagen 1990.

    Google Scholar 

  • Sverdrup, H. U., Warfvinge, P., & Rosén, K. (1992). A model for the impact of soil solution Ca:Al ratio, soil moisture and temperature on tree base cation uptake. Water, Air, and Soil Pollution, 61, 365–383.

    CAS  Google Scholar 

  • Sverdrup, H., Thelin, G., Robles, M., Stjernquist, I., & Sörensen, J. (2006). Assessing sustainability of different tree species considering Ca, Mg, K, N and P at Björnstorp Estate. Biogeochemistry, 81, 219–238.

    CAS  Google Scholar 

  • Sverdrup, H., Belyazid, S., Nihlgård, B., & Ericson, L. (2007). Modelling change in ground vegetation response to acid and nitrogen pollution, climate change and forest management at in Sweden 1500–2100 A.D. Water, Air, and Soil Pollution: Focus, 7, 163–179.

    CAS  Google Scholar 

  • Tammi, J., Appelberg, M., Beier, U., Hesthagen, T., Lappalainen, A., & Rask, M. (2003). Fish status survey of Nordic lakes: Effects of acidification, eutrophication and stocking activity on present fish species composition. Ambio, 32, 98–105.

    Google Scholar 

  • Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C. P., Zhao, F.-J., et al. (2006). A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environmental Science and Technology, 40, 7085–7093.

    CAS  Google Scholar 

  • Thornton, F. C., Schaedle, M., & Raynal, D. J. (1987). Effects of aluminum on red spruce seedlings in solution culture. Environmental and Experimental Botany, 27, 489–498.

    CAS  Google Scholar 

  • Throop, H. L., & Lerdau, M. T. (2004). Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems, 7, 109–133.

    CAS  Google Scholar 

  • Tipping, E., Lofts, S., Hooper, H., Frey, B., Spurgeon, D., & Svendsen, C. (2010). Critical Limits for Hg(II) in soils, derived from chronic toxicity data. Environmental Pollution, 158, 2465–2471.

    CAS  Google Scholar 

  • Tyler, G. (1992). Critical concentrations of heavy metals in the mor horizon of Swedish forests (Report 4078). Solna: Swedish Environmental Protection Agency.

    Google Scholar 

  • UBA. (1996). Manual on methodologies and criteria for mapping critical levels & loads and geographical areas where they are exceeded. (UBA-Texte 71/96). Berlin: Umweltbundesamt.

    Google Scholar 

  • Ulrich, B. (1981). Ökologische Gruppierung von Böden nach ihrem chemischen Bodenzustand. Zeitschrift für Pflanzenernährung und Bodenkunde, 144, 289–305.

    CAS  Google Scholar 

  • Ulrich, B. (1984). Effects of air pollution on forest ecosystems and waters: The principles demonstrated at a case study in Central Europe. Atmospheric Environment, 18, 621–628.

    Google Scholar 

  • Ulrich, B., & Matzner, E. (1983). Abiotische Folgewirkungen der weitraümigen Ausbreitung von Luftverunreinigung. (Forschungsbericht 10402615). Umweltforschungsplan der Bundesminister des Inneren. BRD: (in German).

    Google Scholar 

  • Ulrich, B., & Pankrath, J. (1983). Effects of accumulation of air pollutants on forest ecosystems. Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Ulrich, B., Mayer, R., & Khanna, P. K. (1980). Chemical changes due to acid precipitation in a loess-derived soil in central Europe. Soil Science, 130, 193–199.

    CAS  Google Scholar 

  • Van den Berg, L. J. L., Peters, C. J. H., Ashmore, M. R., & Roelofs, J. G. M. (2008). Reduced nitrogen has a greater effect than oxidised nitrogen on dry heathland vegetation. Environmental Pollution, 154, 359–369.

    Google Scholar 

  • Van der Salm, C., De Vries, W., Reinds, G. J., & Dise, N. B. (2007). N leaching across European forests: Derivation and validation of empirical relationships using data from intensive monitoring plots. Forest Ecology and Management, 238, 81–91.

    Google Scholar 

  • Van Dijk, H. F. G., de Louw, M. H. J., Roelofs, J. G. M., & Verburgh, J. J. (1990). Impact of artificial, ammonium-enriched rainwater on soils and young coniferous trees in a greenhouse. Part 2-Effects on the trees. Environmental Pollution, 63, 41–59.

    Google Scholar 

  • Vig, K., Megharaj, M., Sethunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review. Advances in Environmental Research, 8, 121–135.

    CAS  Google Scholar 

  • Warfvinge, P., Sverdrup, H., & Rósen, K. (1992). Calculating critical loads for N to forest soils. In P. Grennfeld & E. Thörnelöf (Eds.), Critical loads for nitrogen. NORD 1992:41 (pp. 403–418). Copenhagen: Nordic Council of Ministers.

    Google Scholar 

  • Warfvinge, P., Falkengren-Grerup, U., Sverdrup, H., & Andersen, B. (1993). Modelling long-term cation supply in acidified forest stands. Environmental Pollution, 80, 209–221.

    CAS  Google Scholar 

  • Watmough, S. A., & Dillon, P. J. (2003). Do critical load models adequately protect forests? A case study in south-central Ontario. Canadian Journal of Forest Research, 33, 1544–1556.

    CAS  Google Scholar 

  • Watmough, S. A., Aherne, J., Alewell, C., Arp, P., Bailey, S., Clair, T., et al. (2005). Sulphate, nitrogen and base cation budgets at 21 forested catchments in Canada, the United States and Europe. Environmental Monitoring and Assessment, 109, 1–36.

    CAS  Google Scholar 

  • WHO. (2004). Guidelines for drinking-water quality. Volume 1: Recommendations. Geneva.

    Google Scholar 

  • Wolfe, A. P., Baron, J. S., & Cornett, R. J. (2001). Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology, 25, 1–7.

    Google Scholar 

  • Wolfe, A. P., Cooke, C. A., & Hobbs, W. O. (2006). Are current rates of atmospheric Nitrogen deposition influencing lakes in the eastern Canadian Arctic? Arctic, Antarctic and Alpine Research, 38, 465–476.

    Google Scholar 

  • Zöttl, H. W., & Mies, E. (1983). Nährelementversorgung und Schadstoffbelastung von Fichtenökosystemen im Südschwarzwald unter Immissionseinfluß. Mitteilungen der Deutschen Botanischen Gesellschaft, 38, 429–434.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Vries, W. et al. (2015). Geochemical Indicators for Use in the Computation of Critical Loads and Dynamic Risk Assessments. In: de Vries, W., Hettelingh, JP., Posch, M. (eds) Critical Loads and Dynamic Risk Assessments. Environmental Pollution, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9508-1_2

Download citation

Publish with us

Policies and ethics