Skip to main content

Advertisement

Log in

Ethanol production from sugars derived from plant biomass by a novel fungus

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The concept of transforming renewable plant biomass, and in particular organic waste, to fuels or chemicals continues to attract attention as nonrenewable fossil fuel reserves decrease1,2. Cellulose and hemicellulose, which comprise more than 70% of plant biomass and are the two most abundant organic compounds in the biosphere, occur in the wastes from agriculture and forestry as well as from vegetable and fruit processing and municipal waste treatment. Recycling of these wastes to useful products helps to prevent pollution. After enzymatic or acid hydrolysis, plant biomass yields mostly cellobiose, xylose and glucose together with mannose, galactose and arabinose. Microorganisms which can ferment such a wide range of sugars, at high concentrations, into a high concentration of ethanol have not been reported previously. Here we report on a novel fungus, Paecilomyces sp. NF1, which is capable of fermenting all of the major sugars derived from hydrolysis of plant biomass to ethanol. In xylose fermentation, the ethanol yield of this fungus remained almost unchanged when the concentration of xylose was increased from 20 to 200 g l−1. The fungus also produced good yields of ethanol from glucose, fructose, cellobiose, arabinose, galactose, mannose and ribose, as well as from the simultaneous saccharification and fermentation (SSF) of cellulose with hemicellulose, and from acid hydrolysates of plant biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammond, A. L. Science 195, 564–567 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Lubinska, A. Nature 314, 395 (1985).

    Article  ADS  Google Scholar 

  3. Barron, G. L. Meth. Microbiol. 4, 405–427 (1971).

    Article  Google Scholar 

  4. Takasawa, S., Morikawa, Y., Takayama, K. & Masunaga, I. US Patent no. 4472501 (1984).

  5. Kurtzman, C. P., Bothast, R. J. & Van Cauwenberge, J. E. US Patent 4359534 (1982).

  6. Jeffries, T. W. Biotechnol. Lett. 3, 213–218 (1981).

    Article  CAS  Google Scholar 

  7. Fein, J. E., Tallim, R. & Lawford, R. Can. J. Microbiol. 30, 682–690 (1984).

    Article  CAS  Google Scholar 

  8. Gong, C. S., McCracken, L. D. & Tsao, G. T. Biotechnol. Lett. 3, 245–250 (1981).

    Article  CAS  Google Scholar 

  9. du Preez, J. C. & van der Walt, J. P. Biotechno. Lett. 5, 357–362 (1983).

    Article  CAS  Google Scholar 

  10. du Preez, J. C., Prior, B. A. & Monteiro, A. M. T. Appl. microb. Biotechnol. 19, 261–266 (1984).

    Article  CAS  Google Scholar 

  11. Suihko, M. L. & Enari, T. M. Biotechnol. Lett. 3, 723–728 (1981).

    Article  CAS  Google Scholar 

  12. Margaritis, A. & Bajpai, P. Appl. envir. Microbiol. 44, 1039–1041 (1982).

    CAS  Google Scholar 

  13. Schnider, H., Maleszka, R., Wang, P. Y., Veliky, I. A. & Chan, Y. K. US Patent no. 4477569 (1984).

  14. Slininger, P. J., Bothast, R. J., Van Cauwenberge, J. E. & Kurtzman, C. P. Biotechnol. Bioengng 24, 371–384 (1982).

    Article  CAS  Google Scholar 

  15. Ueng, P. P. & Gong, C. S. Enzyme microb. Technol. 4, 169–171 (1982).

    Article  CAS  Google Scholar 

  16. Dekker, R. F. H. Biotechnol. Lett. 4, 411–416 (1982).

    Article  CAS  Google Scholar 

  17. Leonard, R. H. & Hajny, G. J. Ind. Engng Chem. analyt. Edn 37, 390–395 (1945).

    Article  CAS  Google Scholar 

  18. Lee, Y. Y. & McCaskey, P. A. TAPPI 66, 102–107 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Lastick, S. & Updegraff, D. Ethanol production from sugars derived from plant biomass by a novel fungus. Nature 321, 887–888 (1986). https://doi.org/10.1038/321887a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321887a0

  • Springer Nature Limited

This article is cited by

Navigation