Skip to main content
Log in

Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Calcium is believed to control a variety of cellular processes, often with a high degree of spatial and temporal precision. For a cell to use Ca2+ in this manner, mechanisms must exist for controlling the ion in a localized fashion. We have now gained insight into such mechanisms from studies which measured Ca2+ in single living cells with high resolution using a digital imaging microscope and the highly fluorescent Ca2+-sensitive dye, Fura-2. Levels of Ca2+ in the cytoplasm, nucleus and sarcoplasmic reticulum (SR) are clearly different. Free [Ca2+] in the nucleus and SR was greater than in the cytoplasm and these gradients were abolished by Ca2+ ionophores. When external Ca2+ was raised above normal in the absence of ionophores, free cytoplasmic Ca2+ increased but nuclear Ca2+ did not. Thus, nuclear [Ca2+] appears to be regulated independently of cytoplasmic [Ca2+] by gating mechanisms in the nuclear envelope. The observed regulation of intranuclear Ca2+ in these contractile cells may thus be seen as a way to prevent fluctuation in Ca2+-linked nuclear processes during the rise in cytoplasmic [Ca2+] which triggers contraction. The approach described here offers the opportunity of following changes in Ca2+ in cellular compartments in response to a wide range of stimuli, allowing new insights into the role of local changes in Ca2+ in the regulation of cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fay, F. S., Hoffmann, R., LeClair, S. & Merriam, P. Meth. Enzym. 85, 284–292 (1982).

    Article  Google Scholar 

  2. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  3. Fay, F. S., Rees, D. D. & Warshaw, D. M. in Membrane Structure and Function Vol. 4 (ed. Bittar, E.) 80–130 (Wiley, New York, 1981).

    Google Scholar 

  4. Murray, J. J., Reed, P. W. & Fay, F. S. Proc. natn. Acad. Sci. U.S.A. 72, 4459–4463 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Fay, F. S., Schlevin, H., Granger, B. & Taylor, S. R. Nature 280, 506–508 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Williams, D. A. & Fay, F. S. Am. J. Physiol. (in the press).

  7. Fay, F. S., Fogarty, K. E. & Coggins, J. M. in Optical Methods in Cell Physiology (eds DeWeer, P. & Salzburg, B.) (Wiley, New York, in the press).

  8. Bond, M., Shuman, H., Somlyo, A. P. & Somlyo, A. V. J. Physiol. Lond. 357, 185–201 (1984).

    Article  CAS  Google Scholar 

  9. Paine, P.L., Pearson, T. W., Tluczek, L.J.M. & Horowitz, S. B. Nature 291, 258–261 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Palmer, L. G. & Civan, M. M. J. Membrane Biol. 33, 41–61 (1977).

    Article  CAS  Google Scholar 

  11. Unwin, P. N. T. & Milligan, R. A. J. Cell Biol. 93, 63–75 (1982).

    Article  CAS  Google Scholar 

  12. Bonner, W. M. in The Cell Nucleus (ed. Busch, H.) 97–148 (Academic, New York, 1978).

    Google Scholar 

  13. Dingwade, C., Sharnick, S. V. & Laskey, R. A. Cell 30, 449–458 (1982).

    Article  Google Scholar 

  14. Feldherr, C. M., Kallenbach, E. & Salrutz, N. J. Cell Biol. 99, 2216–2222, (1984).

    Article  CAS  Google Scholar 

  15. Laskey, R. A., Honda, B. M., Millis, A. D. & Finch, J. T. Nature 275, 416–420 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Kulikova, O. G., Savostianov, G. A., Beliavtseva, L. M. & Razumovskaia, N. I. Biokhimica 47, 1216–1221 (1982).

    CAS  Google Scholar 

  17. Popescu, L. M. in Excitation-Contraction Coupling in Smooth Muscle (eds Casteels, R., Godfraind, T. & R¼ege, J. C.) (Elsevier, Amsterdam, 1977).

    Google Scholar 

  18. Somlyo, A. P., Somlyo, A. V., Shuman, H. & Endo, M. Fedn Proc. 41, 2883–2890 (1982).

    CAS  Google Scholar 

  19. Kowarski, D., Shuman, H., Somlyo, A. P. & Somlyo, A. V. J. Physiol., Lond. 366, 153–175 (1985).

    Article  CAS  Google Scholar 

  20. Harper, J. F. et al. Proc. natn. Acad. Sci. U.S.A. 77, 366–370 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Maizels, E. T. & Jungmann, R. A. Endocrinology 112, 1895–1902 (1983).

    Article  CAS  Google Scholar 

  22. Pardo, J. P. & Fernandez, F. FEBS Lett. 143, 157–160 (1982).

    Article  CAS  Google Scholar 

  23. Simmen, R. C. M. et al. J. Cell Biol. 99, 588–593 (1984).

    Article  CAS  Google Scholar 

  24. White, B. A. J. biol. Chem. 260, 1213–1217 (1985).

    CAS  PubMed  Google Scholar 

  25. Moisescu, D. G. & Thieleczek, R. J. Physiol., Lond. 275, 241–262 (1978).

    Article  CAS  Google Scholar 

  26. Stephenson, D. G. & Williams, D. A. J. Physiol., Lond. 317, 281–302 (1981).

    Article  CAS  Google Scholar 

  27. Lakowiez, J.R. Principles of Fluorescence Microscopy (Plenum, New York, 1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, D., Fogarty, K., Tsien, R. et al. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318, 558–561 (1985). https://doi.org/10.1038/318558a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318558a0

  • Springer Nature Limited

This article is cited by

Navigation