Skip to main content
Log in

A lower crustal origin for massif-type anorthosites

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The origin of batholith-sized masses of plagioclase-rich crustal rocks, mainly Proterozoic in age, has mostly been ascribed to aluminous magmas of mantle derivation. Here we propose that such masses are derived by partial melting of an aluminous lower continental crust, which has developed following extraction of a granitic upper crust by intra-crustal melting. This segregation of upper and lower crusts occurred principally in the late Archaean. As the lower crust was depleted in heat-producing elements during the initial melting to produce granites, an external source of heat is required to produce Proterozoic massif-type anorthosites. We speculate that this heat resulted from the continental crust moving over a mantle hotspot or line plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashwal, L. D., Morrison, D. A., Phinney, W. C. & Wood, J. Contr. Miner. Petrol. 82, 259–273 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Simmons, E. C. & Hanson, G. N. Contr. Miner. Petrol. 66, 119–135 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Herz, N. Science 164, 944–947 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Duchesne, J.-C. & Demaiffe, D. Earth planet. Sci. Lett. 38, 249–272 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Emslie, R. F. Precambr. Res. 7, 61–98 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Wiebe, R. A. Nature 286, 564–567 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Fudao, Z. & Guanghong, X. Geochemistry 1, 96–104 (1982).

    Google Scholar 

  8. Morse, S. A. Am. Miner. 67, 1087–1100 (1982).

    CAS  Google Scholar 

  9. Ashwal, L. D. & Wooden, J. L. Nature 306, 679–680 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Bridgwater, D. & Windley, B.F. Geol. Soc. S. Afr. Spec. Publ. 3, 307–317 (1973).

    CAS  Google Scholar 

  11. Wynne-Edwards, H. R. Am. J. Sci. 276, 927–953 (1976).

    Article  ADS  Google Scholar 

  12. Taylor, S. R. & McLennan, S. M. The Continental Crust: its Composition and Evolution (Blackwell, Oxford, in the press).

  13. Taylor, S. R. & McLennan, S. M. Phil. Trans. R. Soc. A 301, 381–399 (1981).

    Article  ADS  CAS  Google Scholar 

  14. McLennan, S. M. & Taylor, S. R. J. Geol. 90, 347–361 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Oliver, J. J. geophys. Res. 88, 3340 (1983).

    Google Scholar 

  16. Michot, J. Norsk Geol. Tidsskr. 41, 157–172 (1961).

    CAS  Google Scholar 

  17. Green, T. H. Can. J. Earth Sci. 6, 427–440 (1969).

    Article  ADS  CAS  Google Scholar 

  18. Sparks, R. S. J., Meyer, P. & Sigurdsson, H. Earth planet. Sci. Lett. 46, 416–430 (1980).

    Article  ADS  Google Scholar 

  19. Stolper, E. & Walker, D. Contr. Miner. Petrol. 74, 7–12 (1980).

    Article  ADS  CAS  Google Scholar 

  20. O'Hara, M. J. Nature 200, 683–686 (1968).

    Article  ADS  Google Scholar 

  21. Clarke, D. B. Contr. Miner. Petrol. 25, 203–224 (1970).

    Article  ADS  CAS  Google Scholar 

  22. Elthon, D. Nature 278, 514–518 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Elthon, D. & Scarfe, C. M. Yb. Carnegie Instn Wash. 79, 277–281 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, S., Campbell, I., McCulloch, M. et al. A lower crustal origin for massif-type anorthosites. Nature 311, 372–374 (1984). https://doi.org/10.1038/311372a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311372a0

  • Springer Nature Limited

This article is cited by

Navigation